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I am delighted to introduce the latest Scientific Portfolio special issue of the EDHEC 
Research Insights supplement to Investment & Pensions Europe (IPE), which aims 
to provide institutional investors with an academic research perspective on the most 

relevant issues in the industry today.
We first look at climate transition risks in portfolio management by introducing a 

model that integrates firm-specific ‘green’ revenues, aligned with the European 
taxonomy. The analysis highlights three main results: revenue impacts are as influen-
tial as carbon pricing in shaping transition risks; effects vary within sectors, with some 
firms benefiting under ambitious transition scenarios; and socio-economic uncertainty 
strongly influences loss estimates.

Understanding the drivers influencing greenhouse gas emissions in financial 
portfolios is crucial for constructing and monitoring climate investment strategies. We 
compare existing frameworks for identifying the drivers of portfolio decarbonisation, 
exploring key drivers and methods to isolate their effects. Building on this review, a 
flexible three-step model is formalised to integrate these drivers, and five specific 
models are developed to address climate-related questions. 

We examine the informational overlap between environmental, social and govern-
ance (ESG) scores and ESG exclusionary screening strategies within equity portfolios. 
While ESG scores are widely used for integrating sustainability considerations in 
portfolio management, they may not fully align with exclusion criteria targeting 
companies engaged in controversial activities or behaviour. By comparing the results of 
both approaches on a set of 417 indices, the analysis reveals that reliance on ESG 
scores alone omits a substantial proportion of companies that fail to meet ‘do no harm’ 
criteria.

Exclusion/negative screening is the most popular methodology used to integrate 
ESG criteria into investment strategies. We examine the impact of exclusion policies on 
the financial risks of 493 indices from Developed Europe and the US. To address 
varying ESG criteria, we built three screens: one based on consensual criteria among 
asset owners, another incorporating additional climate criteria, and a third eliminating 
companies negatively impacting any United Nations sustainable development goal. The 
first two screens show limited impact on index risks, especially when using optimised 
reallocation.

Finally, we look at the benefits of risk-based diversification for equity investors. 
Diversification benefits can be achieved while maintaining the level of active risk, an 
important feature for investors seeking to both fully utilise their active risk budget and 
manage extreme losses, and risk-based diversification is achievable without reducing 
expected long-term returns.

We hope that the articles in the supplement will prove useful, informative and 
insightful. We wish you an enjoyable read and extend our warmest thanks to IPE for 
their collaboration on the supplement.

Shahyar Safaee, Deputy CEO and Business Development Director, Scientific 
Portfolio
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This article (a summary of a 
recent research paper1) addresses 
climate transition risks in portfolio 
management by introducing a 
model that integrates firm-specific 
‘green’ revenues, aligned with the 
European taxonomy, with economic 
and energy variables from adverse 
transition scenarios. Unlike short-
term climate stress tests focusing 
on carbon pricing, our model 
incorporates operational cost and 
revenue transmission channels 
to derive a conditional transition 
loss metric. Applied to 1,287 listed 
companies, our analysis highlights 
significant portfolio equity risks 
with aggregate portfolio impacts 
ranging from 0.5-6% and sector-
specific losses as high as 10-60% 
in vulnerable sectors such as 
utilities. Integrating such forward-
looking scenario analysis results 
with backward-looking financial 
factor models may help capture 
shifts in investor perceptions 
and enhance equity portfolio risk 
management.

Key takeaways:

Climate transition risks present 
significant challenges for portfolio 
management. Short-term climate 
stress tests focus predominantly 
on carbon pricing and operational 
costs, often neglecting longer-term 
revenue impacts from demand 
changes. 

This paper introduces a model 
combining firm-specific ‘green’ 
revenues, aligned with the European 
taxonomy, with economic and energy 
variables from adverse transition 
scenarios to calculate a conditional 
transition loss metric, capturing the 
interplay between revenue and cost 
dynamics.

Applied to the 1,287 MSCI World 
Index constituents, the analysis 
highlights three main results: 
revenue impacts are as influential as 
carbon pricing in shaping transition 
risks; effects vary within sectors, 
with some firms benefiting under 
ambitious transition scenarios; and 
socio-economic uncertainty strongly 
influences loss estimates.

Introduction
Climate-related transition risks are 
increasingly central to equity portfolio 
management. These risks pose potential 
disruptions while offering opportunities 
for firms aligned with climate goals. For 
equity portfolio managers, transition risks 
affect valuations, sectoral dynamics and 
risk-return profiles. Understanding and 
quantifying these risks is crucial for 
portfolio allocation. However, the pricing 
of transition risks in financial markets 
remains inconsistent. 

Some research indicates firms with 
higher greenhouse gas emissions trade at 
a discount due to a carbon risk premium 
(Bolton and Kacperczyk [2023]). Others 
suggest green stocks have outperformed 
brown stocks, indicating transition risks 
are not uniformly priced (Bernardini et al 
[2021], Bauer et al [2022]). Differences 
between realised and expected returns, as 
well as structural barriers like inadequate 
risk models and short-term investment 
horizons, contribute to this uncertainty 
(Thomä and Chenet [2017], Campiglio et 
al [2023]).

Long-term scenario analysis has 
emerged as a critical tool for assessing 
transition risks. Unlike short-term climate 
stress tests focused on carbon pricing and 
operational cost impacts, scenario-based 
methodologies incorporate broader 
economic and energy transformations. 
Regulatory bodies like the Network for 
Greening the Financial System (NGFS) 
have advanced integrated assessment 
models to capture direct and indirect 
effects. However, these approaches often 
lack firm-level granularity, making it 
difficult to differentiate risks within sectors.

Beyond carbon price:  
a scenario-based quantification 
of portfolio financial loss from 

climate transition risks
Thomas Lorans, Deputy Head of ESG Research, Scientific Portfolio; 

Julien Priol, ESG Researcher, Scientific Portfolio; Vincent 
Bouchet, Director of ESG Research, Scientific Portfolio

1 Lorans, T., J. Priol and V. Bouchet (2025). Beyond Carbon Price: A Scenario-Based Quantification of Portfolio Financial 
Loss from Climate Transition Risks. Scientific Portfolio Publication.

mailto:thomas.lorans%40scientificportfolio.com?subject=
mailto:julien.priol%40scientificportfolio.com?subject=
mailto:vincent.bouchet%40scientificportfolio.com?subject=
mailto:vincent.bouchet%40scientificportfolio.com?subject=
https://scientificportfolio.com/pdfs/2025-01-beyond-carbon-price-scenario-based-loss-climate-transition-risks.pdf
https://scientificportfolio.com/pdfs/2025-01-beyond-carbon-price-scenario-based-loss-climate-transition-risks.pdf
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This paper introduces a model 
integrating firm-specific revenue data, 
particularly ‘green’ revenues aligned with 
the European taxonomy, alongside carbon 
intensity metrics. By linking firm revenue 
dependencies to sectoral variables from 
NGFS scenarios, the model captures both 
revenue and operational cost transmission 
channels, offering a more comprehensive 
transition risk framework. Additionally, it 
evaluates financial outcome sensitivity to 
scenario assumptions, time horizons, and 
model uncertainties.

Applying this approach to 1,287 MSCI 
World Index companies, the analysis finds 
revenue transmission effects as significant 
as carbon pricing in shaping transition 
risks. It highlights substantial intra-
sectoral variation, with some firms 
benefiting while others face losses. 
Scenario and time horizon assumptions 
prove crucial, whereas the choice of an 
integrated assessment model has a more 
limited impact.

The rest of the paper is structured as 
follows: the first section introduces the 
model and data, the second section 
examines revenue transmission, sectoral 
differences and scenario sensitivity, and 
the third discusses findings in context, 
offering recommendations for future 
research and risk management.

Model and data
Equity asset prices can fluctuate due to 
shifts in investors’ perceptions of the 
firm’s future expected cash flows or 
changes in the discount rate applied to the 
present value of those cash flows (Pástor 
et al [2021]). Transition risk drivers can 
influence these cash flows, potentially 
harming ‘brown’ firms or benefiting 
‘green’ firms. This section introduces a 
model and its calibration for the condi-
tional transition loss in equity value 
caused by changes in expectations 
surrounding climate transition scenarios, 
focusing on the impact of changes in 
expected cash flows.

A discounted-cash flow model for transition 
risk channels 
The analysis uses a discounted cash flow 
model that captures two key transmission 
channels. The first channel, revenue, 
varies across firms based on activity 
contributions, with each segment driven 
by a corresponding scenario variable. The 
second channel, operating costs, depends 
on the firm’s direct emissions (Scope 1) 
intensity and the carbon price specified in 
the scenario. 

Let CFi,t denote the cash flows of firm i 

at time t, under the expected (baseline) 
transition scenario. We assume the 
following cash flow structure:

( ), , ,1i t i t i tCF Y ω θ τ ρ= − − − −

where Yi,t represents revenue, ωi,t the carbon 
costs rate, θ the operating cost rate, τ is the tax 
rate, and ρ the (net) investments rate.2 Firm 
revenue, Yi,t, is the sum of the revenue of its 
activity segments, denoted by s. The revenue 
dynamic is driven by a growth factor specific 
to each activity segment:

,
, , ,0

,0
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i t i s

s s

Y
Y Y

Y
= ×∑

where Yi,s,0 is the initial sales of product s 
for stock i, and Ys,t/Ys,0 is the growth factor 
of the product’s demand over time, 
determined by the scenario. 

The carbon cost rate is modelled as the 
product of a firm’s direct emissions (Scope 
1) and the scenario’s carbon price, 
excluding indirect emissions (Scope 2 and 
3) from direct cost calculations. This 
assumes their impact is already factored 
in at the sector level via the integrated 
assessment model and reflected in firm 
cash flows through the revenue channel. 

Finally, to avoid negative cash flows, 
the carbon cost rate is capped such that 
the sum of the carbon cost rate, tax rate, 
operating cost rate, and investment rate 
does not exceed 1:

( ), min ,1i t i tω σ τ θ ρ= ×Λ − − −

where σi is the carbon intensity of the 
stock i and Λt is the carbon price. 

Once the cash flows are projected 
between the reference date and the 
analysis horizon, they are discounted by 
weighted average cost of capital (WACC):

( )
,

,
1

i t
i t t

CF
DCF

WACC
=

+

These discounted cash flows are 
summed to compute the total firm value 
Vi:

,

T

i i t
t

V DCF=∑

The conditional transition loss is finally 
computed as the relative change in the 
stock value compared to the value in the 
baseline scenario:

i
i baseline

i

V
L

V
 ∆

= − 
 

Decomposing the revenue and carbon cost 
effects on conditional transition loss
The revenue and operational cost 
transmission channels are interconnected. 
Since carbon costs are proportional to a 
firm’s carbon intensity, total operating 
costs depend on activity levels, which are 

2 Every rate is expressed as a fraction of the sales. It 
allows us to factorise the sales in the cashflows formula.

in turn determined by firm revenue. To 
better understand the relative contribu-
tion of each transmission channel, this 
relationship is further analysed. Specifi-
cally, we calculate the sensitivity of DCF 
to changes in carbon cost rate ωi,t and 
projected sales Yi,t:
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These partial derivatives give us the 
sensitivity of the discounted cashflows to 
the carbon costs rate and sales:
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The impact on the discounted cash-
flows of the stock i due to the climate 
scenarios can thus be described as:
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where ΔYi,t and Δωi,t are the differences in 
the projected sales and the carbon costs 
rate between the initial expected transi-
tion scenario and the new market 
expectations. The total impact of the 
transition scenario on firm i’s discounted 
cash flows can thus be expressed as:

, , , ,
YY

i t i t i t i tDCF DCF DCF DCF ωω ×∆ = ∆ + ∆ + ∆

The change in stock value due to 
unexpected transition concerns is:

YY
i t t tV V V V ωω ×∆ = ∆ + ∆ + ∆

The loss from each factor is computed 
as a ratio to the baseline stock value:

Y
Y i
i baseline

i

V
L

V
 ∆

= − 
 
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Y

Y i
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V
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×
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where Vi
baseline is the value of the stock in 

the initially expected transition scenario. 
The loss from net carbon tax is computed 
as the loss from carbon netted from the 
interaction term:

net Y
i i iL L Lω ω ω×= +
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The total loss of the stock  can 
therefore be expressed as:

netY
i i iL L Lω= +

This decomposition captures the 
repricing effects of unexpected change in 
transition concerns through two main 
dimensions: the net carbon tax effect and 
the revenue effect.

Model calibration
The growth factors – specific to each 
activity segment – and the carbon price 
are calibrated based on the NGFS 
scenarios database.3 

The Current Policies scenario serves as 
the reference, while Net Zero 2050 is the 
primary ‘adverse’ transition scenario. 
Certain segments, particularly climate 
policy-relevant sectors (Battiston et al 
[2017]), face heightened transition risks. 
For these, relevant NGFS scenario 
variables serve as proxies to estimate 
revenue growth factors (figure 1). The 
growth factor is defined as Ys,t/Ys,0, where 
Ys,t is the demand of the product s at time 
t and Ys,0 is the demand of the product s at 
the base year (2020). 

The initial revenue for each activity 
segment, Yi,s,0, is determined using the 
European Sustainable Taxonomy (Moody’s 
Product & Services dataset) in conjunction 
with the NACE classification.4 The 
weighted average cost of capital (WACC), 
tax rate (τ), operating costs rate (θ) and net 
investments rate (ρ) are calibrated with the 
global version of the Damodaran Online 
database5 at TRBC sector level6 (figure 2). 

Results
Applying the model to the 1,287 largest 
listed companies worldwide7 reveals that 
the revenue transmission channel has a 
comparable impact to carbon pricing. 
Incorporating both channels reveals 
heterogeneous impacts within transition-
sensitive sectors, offering additional 
insights beyond carbon intensity as a risk 
proxy. Lastly, the analysis examines the 
sensitivity of these findings to scenario 
and time horizon choices. 

The revenue transmission channel as a key 
driver 
Unlike short-term assessments of carbon 
pricing on operating costs, this long-term 
scenario analysis accounts for demand 
shifts across activity segments. The 
revenue transmission channel has a 
greater aggregate impact than carbon 
pricing across most sectors, including 
low-emission industries (healthcare, 
telecoms, technology) influenced by GDP 
trends and transition-sensitive sectors 
(utilities, energy, industrials) where 

‘green’ segments grow as ‘brown’ 
segments decline. Overall, utilities, 
energy, basic materials8 and industrials 

3 Scenarios are based on three Integrated Assessment Models (IAMs): GCAM 6.0 NGFS, MESSAGEix-GLOBIOM 
1.1-M-R12 and REMIND-MAgPIE 3.2-4.6. We focus on MESSAGEix-GLOBIOM 1.1-M-R12 model for results 
presentation.
4 For each stock, revenue is allocated as follows: a) percentages from Moody’s dataset are assigned to activity 
segments; (b) The remainder is allocated by NACE code, with unmapped activities ‘Other’.
5  https://pages.stern.nyu.edu/~adamodar/New_Home_Page/data.html
6  Stocks without a TRBC sector are assigned to the total sector, calibrated with the total market. Due to lack of data, 
we assign stocks from the healthcare sector to the total sector.
7  Constituents of the MSCI World Index.
8  Basic materials displays a revenue-to-carbon-tax ratio of only 0.05, making it almost immune to the revenue 
dimension. Its high exposure to carbon taxes likely stems from minimal expected demand shifts under transition 
scenarios. Decarbonisation in this sector depends more on energy supply chain shifts (energy and utilities) than on 
demand-side changes.

Activity segment	 NGFS variable used to calibrate the growth factor

Other	 GDP|MER|Counterfactual without damage
Fossil Fuels Electricity	 Secondary Energy|Electricity|Coal
	 Secondary Energy|Electricity|Gas
	 Secondary Energy|Electricity|Oil
Low Carbon Electricity	 Secondary Energy|Electricity|Biomass
	 Secondary Energy|Electricity|Geothermal
	 Secondary Energy|Electricity|Hydro
	 Secondary Energy|Electricity|Solar
	 Secondary Energy|Electricity|Wind
	 Secondary Energy|Electricity|Nuclear
Fossil Fuels	 Primary Energy|Coal
	 Primary Energy|Gas
	 Primary Energy|Oil
	 Secondary Energy|Gases
	 Secondary Energy|Liquids
Hydrogen	 Secondary Energy|Hydrogen
Alternative Transportation	 Final Energy|Transportation|Electricity
	 Final Energy|Transportation|Hydrogen
Conventional Transportation	 Final Energy|Transportation|Liquids

1. Activity segments and scenario variables

Note: This table presents mapping between specific segment activities and corresponding NGFS scenario 
variables used to proxy revenue trend of each segment. 

Sector	 WACC	 τ	 θ	 ρ
Industrials	 0.091	 0.201	 0.116	 0.071
Basic materials	 0.094	 0.140	 0.090	 0.038
Cyclical consumer	 0.091	 0.138	 0.308	 -0.005
Energy	 0.086	 0.136	 0.068	 0.022
Financials	 0.075	 0.036	 0.232	 -0.032
Non-cyclical consumer	 0.073	 0.174	 0.241	 0.122
Technology	 0.107	 0.079	 0.270	 0.026
Telecoms	 0.077	 0.178	 0.309	 0.016
Utilities	 0.082	 0.141	 0.190	 0.116
Total	 0.064	 0.125	 0.221	 0.032

2. Calibration parameters by TRBC sector

Note: This table presents calibrated parameters for different TRBC sectors, including weighted average cost 
of capital (WACC), tax rate (τ), operating costs rate (θ), and net investments rate (ρ). The WACC is calibrated 
using the field cost of capital. The tax rate (τ) is derived from the tax rate field. The operating costs rate (θ) is 
calculated by subtracting the pre-tax, pre-stock compensation operating margin from the gross margin. The net 
investments rate (ρ) is calibrated using the field net capex/sales.

suffer the greatest losses, with utilities 
facing a potential value loss of up to 58% 
(figure 3). 
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Heterogeneous impact for firms within the 
climate sensitive sectors
Transition risk scenario analyses using 
integrated assessment models provide 
sector-level financial impact assessments. 
However, portfolio managers must 
understand both the sectoral and intra-
sectoral dimensions of transition risks. 
Incorporating the revenue transmission 
channel alongside carbon pricing reveals 
significant heterogeneity. Unlike stress 
tests focused solely on carbon pricing, this 
approach highlights potential positive 
revaluations, particularly in energy and 
utilities, where both ‘winners’ (stocks with 
negative losses) and ‘losers’ emerge (figure 
4). 

A limited overlap between the carbon 
intensity and the conditional transition loss
Carbon intensity, defined as emissions 
relative to revenue or enterprise value, is 
often used as a proxy for transition risks 
in equity markets. While related to 
conditional transition loss, this analysis 
reveals significant divergence due to the 
influence of revenue, especially in utilities 
(figure 5).

Sensitivity analysis to scenario, model, and 
horizon
Long-term scenario analysis differs from 
traditional risk management by extending 
the horizon to as far as 2050 and incorpo-
rating multiple scenarios without assigned 
probabilities. Consequentially, assessing 
sensitivity to these parameters is crucial. 

All transition scenarios result in 
significantly lower conditional transition 
losses than the Net Zero 2050 scenario 
(figure 6). Aggregate losses range from 
0.4% under the Fragmented World 
scenario to 6.2% under Net Zero 2050, 
illustrating the potential range of transi-
tion risk impacts.

Time horizon plays a significant role, 

Sector	 Total (%)	 From net carbon tax (%)	 From revenue (%)	 Revenue impact/carbon tax impact ratio

Utilities	 57.9	 22.2	 35.6	 1.6
Energy	 33.1	 12.4	 20.7	 1.7
Basic materials	 22.0	 20.1	 1.0	 0.1
Industrials	 9.8	 4.9	 5.0	 1.0
Non-cyclical consumer	 4.7	 3.0	 1.8	 0.6
Financials	 3.1	 1.2	 1.9	 1.5
Healthcare	 2.5	 0.7	 1.7	 2.5
Telecoms	 2.1	 0.3	 1.8	 6.3
Technology	 1.8	 0.3	 1.5	 4.6
Cyclical consumer	 -1.6	 1.7	 -3.3	 1.9
MSCI World	 5.9	 2.9	 3.0	 1.0

3. Conditional transition loss per sector

Note: The table presents the weighted average conditional transition loss for each sector, decomposed into total 
loss, net carbon tax loss, and revenue loss under the Net Zero 2050 scenario (MESSAGEix-GLOBIOM 1.1-M-R12 
model). The revenue impact/carbon tax impact ratio compares revenue-driven losses to carbon tax losses. Ratios 
above 1 (in bold) indicate revenue shifts outweigh carbon tax effects, while those below 1 suggest the opposite. 
Negative total loss values reflect net gains.

Sector	 No of stocks	 Mean	 Std dev	 Min	 Max	 Q1	 50%	 Q3

a) Conditional transition loss (total, %)
Utilities	 69	 51.8	 27.3	 -97.5	 71.1	 49.5	 58.9	 67.3
Energy	 59	 30.8	 22.1	 -84.6	 57.1	 27.4	 33.3	 43.8
Basic materials	 88	 22.0	 20.2	 -0.7	 66.7	 5.1	 15.2	 33.0
Industrials	 215	 8.4	 13.1	 -13.7	 65.1	 1.9	 2.5	 7.8
MSCI World	 1,287	 9.2	 17.0	 -97.5	 71.1	 1.8	 2.2	 5.3
b) Loss from net carbon tax (%)
Utilities	 69	 22.4	 25.4	 0.0	 138.0	 5.1	 16.9	 30.2
Energy	 59	 12.7	 10.3	 0.1	 33.9	 4.9	 9.5	 18.4
Basic materials	 88	 20.3	 20.3	 0.1	 64.3	 4.0	 13.6	 32.0
Industrials	 215	 4.2	 10.6	 0.0	 63.4	 0.3	 0.7	 1.5
MSCI World	 1,287	 4.7	 11.7	 0.0	 138.0	 0.1	 0.4	 2.3
c) Loss from revenue (%)
Utilities	 69	 29.3	 31.9	 -97.9	 49.0	 20.2	 46.5	 48.9
Energy	 59	 18.0	 16.1	 -85.0	 340.0	 23.2	 23.3	 23.3
Basic materials	 88	 1.6	 3.1	 -17.4	 21.9	 1.6	 1.6	 1.6
Industrials	 215	 4.2	 6.5	 -15.2	 18.4	 1.7	 1.7	 1.7
MSCI World	 1,287	 4.6	 11.3	 -97.9	 49.0	 1.7	 1.7	 1.8

4. Summary statistics by sector

Note: Summary statistics for total loss, loss from net carbon tax, and loss from revenue are presented for 
utilities, energy, basic materials, industrials and the MSCI World index under the Net Zero 2050 scenario using 
the MESSAGEix-GLOBIOM 1.1-M-R12 model. The data includes mean, standard deviation, minimum, maximum, 
and quartiles (Q1, median, Q3) for each sector. Total loss reflects overall transition risk impacts, while net 
carbon tax and revenue losses isolate carbon pricing and revenue effects. Negative values indicate gains.

5. Relationship between carbon intensity and conditional transition loss
Note: The graphics display the relation between carbon intensity 
and various loss types across utilities, energy, basic materials and 
industrials under the Net Zero 2050 scenario (MESSAGEix-GLOBIOM 
1.1-M-R12).  Each plot presents loss sensitivity to carbon intensity 
levels, measured as the logarithm of Scope 1 + 2 intensities. The 
subplots illustrate the total loss, loss from net carbon tax, and 
loss from revenue. Winsorisation at the 1st and 99th percentiles 
mitigates extreme values. Log transformation allows for a more 
balanced visualisation.

Total loss Loss from net carbon tax Loss from revenue

Lo
ss

 (%
)
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with the conditional transition loss with 
the conditional transition loss increasing 
from 2.5% at a 2030 horizon to 6.2% by 
2050. Despite discounting reducing 
long-term cash flow impacts, most 
transition risks emerge after 2030 (figure 
7). 

The balance between the revenue 
mechanism and the carbon price trans-
mission channel shifts with the time 
horizon. By 2030, losses are largely driven 
by the carbon tax, but beyond 2030, 
revenue dynamics become the primary 
driver (figure 8). Our results exhibit 
limited sensitivity to the choice of the 
integrated assessment model. For the 
aggregate universe, the maximum 
variation in conditional transition loss 
across models is 1.2% (ranging from 6.2% 
to 5.1% – figure 9). 

Combining the sensitivities to each 
parameter indicates that conditional 
transition loss is predominantly influ-
enced by scenario and time horizon 
choices. Model uncertainties have a 
smaller impact (figure 10). 

Discussion and conclusion
This study enhances the understanding of 
climate transition risks by integrating 
firm-level data into long-term scenario 
analysis to quantify financial impacts in 
equity portfolios. By incorporating revenue 
(demand shifts) and operational cost 
transmission (carbon pricing), it reveals 
significant intra-sectoral variation. Utilities 
and other climate-related sectors show 
mixed effects, with some firms benefiting 
and others incurring losses. These findings 
highlight the limitations of carbon 
intensity as a proxy for transition risks. 

Long-term forward-looking scenario 
analyses are challenging to compare due to 
varying assumptions. Our findings, slightly 
lower than existing studies (figure 11), 
reflect the inclusion of transition benefits, 
unlike most studies that focus solely on 
losses. For energy and utilities –the most 
sensitive sectors – our results rank in the 
upper half for transition losses (figure 12). 
While estimates of conditional transition 
loss vary widely, sector-specific ranges 
emerge: diversified portfolios face losses of 
0-15%, while sector-specific losses are 
broader – 10-50% for energy and 10-80% for 
utilities – highlighting substantial sectoral 
heterogeneity in transition risks.

The sensitivity analysis underscores 
the substantial impact of scenario design 
and time horizon on transition risk. 
Despite discounting effects, most condi-
tional transition loss arises from cash 
flows beyond 2030, emphasising the need 
for forward-looking approaches. Practi-
tioners and regulators should adopt 
integrated methodologies that capture 

Sector	 Net Zero 2050	 Below 2°C	 Delayed transition	 Fragmented world	 Max-Min

Utilities	 57.9	 26.6	 21.7	 9.9	 47.9
Energy	 33.1	 9.8	 7.5	 3.3	 29.8
Basic materials	 22.0	 2.9	 2.7	 1.1	 20.9
Industrials	 9.8	 2.6	 2.0	 1.2	 8.6
MSCI World	 6.2	 1.2	 1.0	 0.4	 5.8

Sector	 2030	 2050	 2030/2050	 Max-Min

Utilities	 29.3	 57.9	 0.5	 28.5
Energy	 12.5	 33.1	 0.4	 20.6
Basic materials	 9.0	 22.0	 0.4	 13.0
Industrials	 3.1	 9.8	 0.3	 6.8
MSCI World	 2.5	 6.2	 0.4	 3.7

Sector	 2030		  2050

Utilities	 0.7		  1.6
Energy	 0.9		  1.7
Basic materials	 0.1		  0.1
Industrials	 0.6		  1.0
MSCI World	 0.7		  1.0

Sector	 MESSAGEix-GLOBIOM 1.1-M-R12	 GCAM 6.0 NGFS	 REMIND-MAgPIE 3.2-4.6	 Max-Min

Utilities	 57.8	 51.1	 56.5	 6.7
Energy	 33.1	 22.7	 26.3	 10.4
Basic materials	 22.0	 12.2	 13.2	 9.8
Industrials	 9.8	 5.9	 5.0	 4.8
MSCI World	 6.2	 5.2	 5.1	 1.2

Sector	 Max-Min scenario	 Max-Min horizon	 Max-Min model

Utilities	 47.9	 28.5	 6.7
Energy	 29.8	 20.6	 10.4
Basic materials	 20.9	 13.0	 9.8
Industrials	 8.6	 6.8	 4.8
MSCI World	 5.8	 3.7	 1.2

6. Conditional transition loss sensitivity to scenario

7. Conditional transition loss sensitivity to horizon

8. Revenue impact/carbon impact ratio

9. Conditional transition loss sensitivity to model

10. Conditional transition loss sensitivity to the main parameters

Note: This table displays sectoral losses across transition scenarios – Net Zero 2050, Below 2°C, Delayed 
transition and Fragmented world. The Max-Min column captures the difference between maximum and 
minimum losses, indicating each sector's sensitivity to transition risks. Higher values denote greater sensitivity; 
lower values suggest stability across scenarios.

Note: This table presents sectoral loss sensitivity to time horizons (2030 vs 2050), with percentage losses for 
each sector at both points. The 2030/2050 column reflects near-term versus long-term impacts, while the Max-
Min column captures the range of change over time. Higher Max-Min values indicate greater variation; lower 
values suggest more stability.

Note: This table displays the ratio of revenue impact to carbon tax impact across sectors for 2030 and 2050. A 
ratio above 1 indicates revenue impact exceeds carbon tax impact, while a ratio below 1 suggests the opposite. 
Shifts between 2030 and 2050 highlight how the relative importance of these factors evolves over time.

Note: This table shows sectoral loss sensitivity to different climate economy models – MESSAGEix-GLOBIOM 
1.1-M-R12, GCAM 6.0 NGFS and REMIND-MAgPIE 3.2-4.6 – under the Net Zero 2050 scenario. The Max-Min 
column captures the range of variability in model outcomes. 

Note: This table presents sectoral loss sensitivity to calibration settings, including scenario (Max-Min scenario), 
time horizon (Max-Min horizon) and integrated assessment model (Max-Min model). The values indicate the 
range of potential outcomes by measuring the difference between maximum and minimum losses. 
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Note: The exhibit displays total sectoral losses for a diversified portfolio under each study’s most stringent 
scenario. Horizons align with default settings or the most adverse outcomes. Sector classifications were 
standardised to TRBC sectors (energy and utilities), with median values used where aggregation was needed.

Note: The exhibit displays the conditional transition loss per sector for a diversified portfolio, using each study’s 
most stringent scenario. The selected horizon corresponds to either the study’s default or the one yielding the 
most adverse outcomes. 

revenue and operational cost impacts 
while leveraging complementary scenarios 
and models.
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Understanding the drivers 
influencing greenhouse gas 
emissions in financial portfolios 
is crucial for constructing and 
monitoring climate investment 
strategies. Several attribution 
frameworks have recently 
emerged to identify the drivers 
of portfolio decarbonisation. This 
article (a summary of a recent 
research paper1) compares existing 
frameworks, exploring key drivers 
and methods to isolate their effects. 
Building on this review, a flexible 
three-step model is formalised to 
integrate these drivers, and five 
specific models are developed to 
address climate-related questions. 
These models should help investors 
to better understand portfolio 
emissions changes and distinguish 
external factors from those they can 
directly influence. 

Attribution analysis of 
equity portfolio emissions: 

examining and integrating 
existing frameworks

Vincent Bouchet, Director of ESG and Climate Research, Scientific Portfolio

Key takeaways

Since 2022, several attribution 
frameworks have emerged to help 
investors understand changes 
in emissions metrics – absolute 
emissions, intensity and footprint – 
in financial portfolios.

These frameworks classify the 
drivers into four main categories: 
data coverage, portfolio reallocation, 
economic and financial fluctuations, 
and company emissions. Two 
common attribution methods 
are Laspeyres indicators and the 
logarithmic mean Divisia index.

The drivers are complementary 
and can be integrated into a 
flexible three-step model to assess 
contributions from strategic asset 
allocation, divestment, sector shifts, 
stock selection, price volatility, 
emissions scopes, company activity 
and inflation. 

Introduction
Asset owners can help mitigate climate 
change by reducing portfolio emissions. 
Regulatory and voluntary frameworks that 
define metrics, harmonise reporting 
standards, and align reduction targets 
with the Paris Agreement2 support these 
efforts. However, despite progress, 
investors still face challenges in control-
ling portfolio emissions. 

Since 2022, attribution frameworks 
have emerged to clarify emissions drivers 
(Bouchet [2023], NZAOA [2023], Nagy, 
Giese and Wang [2023], Simmons et al 
[2022]). NZAOA (2023) highlights 
attribution analysis as a tool for investors 
to take informed action via divestment, 
reallocation, engagement or challenging 
asset managers. It also improves transpar-
ency in public reporting, aligning with 
Science Based Targets initiative (SBTi) 
recommendations.

This article compares key attribution 
frameworks and explores how combining 
them can provide greater flexibility for 
investors.

The first section analyses attribution 
frameworks by portfolio type, emissions 
metric, key drivers and attribution 
method. Most assess absolute emissions, 
emissions intensity and footprint, with 
changes driven by data coverage, portfolio 
reallocation, economic shifts and com-
pany emissions. Differences arise mainly 
in reallocation, with some models 
emphasising investment universe changes 
and others sectoral shifts.

Emissions changes are attributed using 
either Laspeyres price and quantity 
indicators (commonly used in price index 
analysis) or the logarithmic mean Divisia 
index (LMDI), an environmental econom-
ics approach better suited for models with 
multiple drivers.

1 Bouchet, V. (2025). Attribution Analysis of Equity Portfolio Emissions: Examining and Integrating Existing 
Frameworks. Scientific Portfolio Publication.
2 EU climate transition and Paris-aligned benchmarks delegated regulation, target setting protocol of the Net-Zero 
Asset Owner Alliance, net-zero investment framework of the Paris Aligned Investment Initiative.

mailto:vincent.bouchet%40scientificportfolio.com?subject=
https://scientificportfolio.com/pdfs/2024-11-attribution-analysis-of-ghg-emissions-associated-with-an-equity-portfolio.pdf
https://scientificportfolio.com/pdfs/2024-11-attribution-analysis-of-ghg-emissions-associated-with-an-equity-portfolio.pdf
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The comparative analysis finds that 
different frameworks offer complemen-
tary insights. To enhance adaptability, a 
flexible three-step model integrates these 
drivers. Applied to a fictitious four-com-
pany portfolio, it examines five climate-
related questions, assessing asset 
allocation, divestment, stock selection, 
market volatility, emissions scopes, 
company activity and inflation.

Attribution analysis helps investors 
distinguish between external factors (eg, 
price volatility) and those they can 
influence (eg, divestment, sector alloca-
tion, stock selection). This makes it a key 
tool for building and monitoring climate 
investment strategies. The generalised 
model proposed enhances flexibility and 
implementation, adapting to investors’ 
needs.

Review of existing attribution 
frameworks
This section compares attribution 
frameworks by Simmons et al (2022), 
Bouchet (2023), Nagy, Giese and Wang 
(2023) and NZAOA (2023). These 
frameworks vary in portfolio types, 
emissions metrics, identified drivers and 
methods used to attribute changes in 
emissions.

Portfolios, metrics and type of analysis
The portfolio’s asset class determines the 
appropriate emissions metrics, varying by 
instrument type: listed, debt, equity, 
company, project, real estate or sovereign. 
Attribution frameworks primarily focus 
on equity portfolios, particularly bench-
marks or indices (figure 1). 

Existing attribution frameworks 
analyse three complementary emissions 
metrics: absolute emissions, emissions 
intensity and emissions footprint. These 
cover Scope 1 (direct emissions), Scope 2 
(indirect emissions from energy use) and 
Scope 3 (indirect value chain emissions). 
Scope 3 inclusion remains debated due to 
scale and methodological challenges 
(Ducoulombier [2021, 2024]). The second 
section explores how attribution analysis 
disentangles the contributions of each 
scope.

Most attribution frameworks analyse 
portfolios over time, crucial for assessing 
contributions to emissions reduction 
targets. Cross-sectional analysis can 
supplement this by comparing two 
portfolios at a given moment.

Drivers that explain change in an emissions 
metric
The drivers in existing frameworks vary 
depending on whether the metric is 
absolute emissions or intensity-based, but 
they generally fall into four categories 

(figure 2). The first relates to data 
coverage, where emissions may change 
due to variations in data availability. 
Methodological changes, especially for 
Scope 3, also fall into this category.

The second category, portfolio realloca-
tion, includes buy and sell decisions 
affecting portfolio composition. These 
shifts are captured through changes in 
instrument weight – driven by transac-

tions and financial fluctuations – and the 
portfolio’s share of a company, which only 
changes through transactions. Bouchet 
(2023) further differentiates between 
sector allocation and stock selection 
drivers.

The third category concerns economic 
and financial fluctuations. Variations in 
enterprise value, including cash (EVIC), 
particularly in the equity component, 

Framework	 Portfolio analysed	 Metrics	 Type of analysis

Simmons et al (2022)	 Equity benchmark (FTSE All-World Index)	 Emissions intensity	 Historical	
Bouchet (2023)	 Equity index (climate impact index)	 Absolute emissions	 Cross-sectional
			   Emissions intensity	 Historical
Nagy, Giese and Wang (2023)	 Equity benchmark (MSCI ACWI Investable Market Index)	 Absolute emissions	 Historical
			   Emissions intensity
	 Exchange-traded fund (US minimum volatility ETF)	 Emissions footprint                                             
NZAOA (2023)	 (Listed) corporate bonds and equity portfolio	 Absolute emissions 	 Historical
			   Emissions intensity
			   Emissions footprint

1. Review of existing portfolios, metrics and types of analysis

Driver type	 Driver	 Bouchet (2023)	 Nagy, Giese and Wang (2023)	 NZAOA (2023)

a) Analysis of change in absolute emissions
Data coverage	 Data coverage		  X	 X
Portfolio reallocation	 New positions		  X	 X
(buy/selldecisions)	 Deleted positions		  X	 X
	 Financing share		  X
Portfolio reallocation	 Sector weight	 X
(buy/selldecisions) and/or	 Instrument weight within sector	 X
financial fluctuations	 Financing value			   X
	 Portfolio AUM	 X
Financial and economic 	 Financing structure		  X 
fluctuations	 EVIC	 X		  X
	 Revenue	 X
Financial and economic 	 Emissions intensity	 X 
fluctuations and/or	
company emissions	
Company emissions	 Emissions		  X	 X

Driver type	 Driver	 Simmons et al	 Bouchet	 Nagy, Giese and Wang	 NZAOA 
		  (2022)	 (2023)	 (2023)	 (2023)	

b) Analysis of change in emissions intensity or footprint
Data coverage	 Data coverage			   X	 X
Portfolio reallocation	 New positions	 X		  X	 X
(buy/selldecisions)	 Deleted positions	 X		  X	 X
Portfolio reallocation	 Sector weight		  X
(buy/selldecisions) and/or	 Instrument weight within sector		  X
financial fluctuations	 Instrument weight within portfolio	 X		  X	 X
Financial and economic 	 Revenue	 X		  X	 X 
fluctuations	
Financial and economic	 Emissions intensity		  X
fluctuations and/or	
company emissions	
Company emissions	 Emissions	 X		  X	 X

2. Drivers in existing attribution frameworks

Note: Various frameworks use different terms for key drivers.
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affect financial structure (equity versus 
debt) and portfolio emissions. Since these 
factors are largely external to investors, 
isolating their effects is key to identifying 
investor-driven emission reductions.

The final category relates to company 
emissions, which fluctuate due to changes 
in emissions intensity or revenue. 
However, revenue changes may not 
accurately reflect production efficiency 
gains, warranting the inclusion of an 
inflation driver.

Methods of attribution
Two main methods are used to attribute 
changes in emissions metrics to driver: 
the Laspeyres and LMDI methods. Let Mp 
represent an emission metric at portfolio 
level which can be expressed as the sum 
for J instruments of a product of N 
variables (drivers): 

1, , , ,
1 1 1 1

. .
NJ J J

p j j n j N j n j
j j j n

M M D D D D
= = = =

= = =∑ ∑ ∑∏

where Mj represents the contribution of 
instrument j to the portfolio metric, and 
Dn,j represents the contribution of driver  
n to Mj.

The goal of an attribution method is to 
express the change from Mp

t0 to Mp
t1 as an 

additive3 decomposition of effects EDn 
corresponding to each driver Dn. 

1

1 0
n N

t t
p p p D D DM M M E E E− = ∆ = + + +

Nagy, Giese and Wang (2023) and 
NZAOA (2023) use a method based on 
Laspeyres (1871) price and quantity 
indicators, commonly used to analyse 
changes in price indexes. This method is 
analogous to decomposition framework 
for a portfolio’s financial performance 
(Brinson and Fachler [1985], Brinson, 
Hood and Beebower [1986]). The case of 
two drivers illustrates this method:

1, 2,
1

.
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M D D
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. . .
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  

where IΔD1,ΔD2 is an interaction term 
between the two variations ΔD1 and ΔD2. 
One limitation of this method is the 
difficulty in interpreting the interaction 
terms. Simmons et al (2022) and Bouchet 
(2023) rely on Divisia index, commonly 
used environmental economics (Ang, 

3 While it is less common in the existing attribution 
frameworks, the attribution can also be multiplicative. In 
this case, the change in the emissions metric is expressed 
as follows: Mt1/Mt0 = ED1.Ex2.….EDn.
4 Absolute emissions, emissions intensity or emissions 
footprint.

Zhang and Choi [1998]). As developed in 
Ang (2015), the additional effects of the 
driver Dn is given by:
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Driver effects using Laspeyres are 
easier to interpret by isolating their 
impact while holding others constant. But 
it lacks symmetry – analysing t0 to t1 
versus t1 to t0 yields different results. As 
more drivers are considered, interaction 
terms increase. These can be eliminated 
using the average method, but the results 
remain sensitive to the order of decompo-
sition. For example, decomposing Mj = 
D1.D2.D3 differs from Mj = D3.D2.D1.

LMDI eliminates interaction terms, is 
symmetrical, and is not sensitive driver 
order, though the effects calculated using 
LMDI are more complex to interpret due 
to logarithms, and handling zero values 
requires attention. 

Laspeyres is recommended for models 
with two drivers, while LMDI is prefer-
able for models with more.

Model and data
Attribution frameworks provide comple-
mentary insights into portfolio emissions 
by analysing different drivers. This section 
introduces a flexible model integrating 
these drivers, using a fictitious portfolio as 
its basis.

A flexible model to combine drivers
The model consists of three steps. 

Step 1: Defining groups of financial 
instruments with the portfolio
Let 𝒫 represent the set of all portfolio 
instruments. The first step defines disjoint 

subsets 𝒫k within 𝒫 to isolate contribu-
tions as drivers (eg, divested instruments 
or sector-specific groups). 

𝒫 
1

K

k=

=


 𝒫k

with 𝒫k È 𝒫l = Æ for all k ≠ l, and K is the 
number of subsets. 

Step 2: Choosing drivers
The second step defines a set of Nk drivers 
whose product equals the instrument 
contribution to the emissions metric4 Mp,t.

,
1

1 . . . .
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These factors can differ depending on 
the subset. In the case of absolute 
emissions, we might be only interested by 
the absolute emissions associated with an 
instrument for the subset ‘divested assets’ 
but by more drivers for the other 
instruments.

M M D D DNp t j
p

j Divested instruments
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Step 3: Choosing an attribution 
method
The third step is to choose an attribution 
method, to determine the effect of any 
driver Dn, between the Laspeyres method 
(with and without interaction terms) and 
the LMDI method (figure 3). 

Fictitious portfolio and companies
A portfolio of four financial instruments, 
covering equity and debt from four 
fictitious companies, is analysed over one 
period (t0 to t1). Two companies belong to 
a carbon-intensive (‘brown’) sector (BS) 
and two to a low-carbon (‘green’) sector 
(GS), with one high-intensity (HI) and 
one low-intensity (LI) firm in each. 
Figures 4 and 5 detail changes in company 
variables and portfolio reallocation. Over 

𝒫

Method	 Formula for EDn

Laspeyres with interaction terms	
	 , 0.
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1 1

. .
n

N n

D n k k
k n k

E D D D
−

= + =

= ∆ ∏ ∏

Logarithm mean Divisia index (LDMI)	
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3. Effect calculation for three attribution methods

Note: As discussed earlier, for Dn, (the financial weight driver), the initial portfolio emissions metric (intensity or 
footprint) can be subtracted, regardless of the method used.
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5 We use a simplified binary classification here, though 
climate-specific classifications can be applied.

the period, absolute emissions decrease 
from 19,677 tCO2e to 14,945 tCO2e, while 
emissions intensity decreases from 295.0 
tCO2e/$m to 181.2 tCO2e/$m.

Results
This section refines the flexible model to 
address key questions related to three of 
the four driver categories (figure 6). Since 
these models often require more than 
three drivers, the LMDI method is used 
for attribution, though the other methods 
remain applicable.

Effects of asset class and sector allocation 
on portfolio absolute emissions
To assess the impact of asset class (equity 
versus debt) and sector5 (brown versus 
green), on absolute emissions changes, an 
initial model applies only the first step – 
defining disjoint portfolio subsets. This 
analysis reveals that most reductions in 
the fictitious portfolio stem from equity 
divestments in the brown sector (figure 7 
7).

Effects of divestment and reallocation on 
absolute emissions
It is essential to determine whether the 
reduction stems from divestment, 
reallocations within the brown sector, or 
reductions in emissions. 

A second model assesses divestment 
impacts and the effects of purchases or 
sales, financial fluctuations (price 
volatility and financial structure), and 
emissions of remaining instruments. 

Company	 Sector	 Unit	 BS-HI	 BS-LI	 GS-HI	 GS-LI 
(i)			   i Î Sbrown	 i Î Sbrown	 i Î Sgreen	 i Î Sgreen

Emissions and economic activity	 E1i,t0 	 (tC02e)	 75,000,000	 25,000,000	 15,000,000	 5,000,000
	 E1i,t1 	 (tC02e)	 -	 50,000,000 (a)	 -	 -
	 E2i,t0 	 (tC02e)	 25,000,000	 12,500,000	 5,000,000	 2,500,000
	 E2i,t1  	 (tC02e)	 12,500,000 (b)	 6,250,000 (b)	 2,500,000 (b)	 1,250,000 (b)
	 Pi,t0	 t	 100	 100	 100	 100
	 Pi,t1	 t	 -	 -	 -	 -
	 Ri,t0	 ($m)	 100,000	 100,000	 100,000	 100,000
	 Ri,t1	 ($m)	 -	 150,000 (c)	 -	 -
Financing structure 	 QE1i,t0 		  100,000,000	 100,000,000	 100,000,000	 100,000,000
	 QE1i,t1 		  -	 -	 -	 -
	 PE2i,t0 	 ($)	 1,000	 1,000	 1,000	 1,000
	 PE2i,t1  	 ($)	 1,200 (d)	 1,300 (d)	 1,300 (d)	 1,500 (d)
	 QD1i,t0 	 -	 50,000,000	 50,000,000	 50,000,000	 50,000,000
	 QD1i,t1 	 -	 -	 -	 -	 100,000,000
	 PDi,t0	 -	 1,000	 1,000	 1,000	 1,000
	 PDi,t1	 -	 -	 -	 -	 -
	 EVICi,t0	 ($m)	 150,000	 150,000	 150,000	 150,000
	 EVICi,t1	 ($m)	 170,000	 180,000	 180,000	 250,000 (e)

Instrument	 Unit	 BS-HI	 BS-LI	 GS-HI	 GS-LI
Type of instrument		  Equity	 Equity	 Debt	 Debt

Nj0 		  10,000	 30,000	 30,000	 30,000
Nj1 		  0.0	 19,384	 63,000	 25,200
PIj,t0 	 $	 1,000	 1,000	 1,000	 1,000
PIj,t1  	 $	 1,200	 1,300	 -	 1,500
wj,0	 %	 10.0	 30.0	 30.0	 30.0
wj,1	 %	 0.0	 20.0	 50.0	 30.0
ws(i(j)),t0	 %	 40.0	 40.0	 60.0	 60.0
ws(i(j)),t1	 %	 20.0	 20.0	 80.0	 80.0
wis(i(j)),t0	 %	 25.0	 75.0	 50.0	 50.0
wis(i(j)),t1	 %	 0.0	 100.0	 62.5	 37.5

4. Changes in company variables

5. Changes in a multi-asset portfolio

Notation: E1 = direction emissions (Scope 1), E2 =direct emissions from electricity (Scope 2), P = physical production (tonnes), R = revenue, QE = quantity of equity instruments, 
PE = equity price, QD = debt quantity, PD = debt price, EVIC = enterprise value including cash. Scenario: BS-LI’s direct emissions double (100%) (a) while revenue rises 50% (c). 
Indirect emissions from electricity fall 50% (b). Equity prices increase 20–50% (d), raising EVIC. GS-LI’s EVIC also rises due to debt issuance (e). 

Notation: N = instrument quantity, PI = price per instrument, w = financial weight in portfolio, ws = sector 
weight, wis = instrument’s financial weight in sector (wis=w⁄ws). Scenario: The portfolio manager fully divests 
from BS-HI, reduces BS-LI exposure, and reallocates to GS-HI debt instruments. 
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What is the contribution of each asset	
class and each climate-sensitive sector?	
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and emissions scopes?

6. Climate-related questions and specific model associated

where Prodi( j) is the physical production (expressed in tonnes in our example) of 
the company, E1i( j) the company emissions on Scope 1, and E2i( j) on Scope 2.

𝒫 𝒫

𝒫𝒫

𝒫 𝒫
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For the fictitious portfolio, divestment 
accounts for most of the absolute 
emissions reduction, while reallocations 
and financial fluctuations have minimal 
impact. In contrast, company emissions 
increase overall (figure 8). From an 
extra-financial perspective, this model 
raises concerns, as company emissions 
rise despite the portfolio’s emissions 
decline. Since divestment drives much of 
the reduction, ensuring its sustainability 
justification is crucial.6 If the exclusion list 
is valid, the effect of legitimate divest-
ments should be decomposed from other 
divestments.7

Effects of divestment and reallocation on 
emissions intensity
If absolute emissions have risen, this may 
be due to increased emissions intensity or 
company activity, such as market share 
growth. One approach to addressing this 
is by analysing portfolio emissions 
intensity, which can change due to shifts 
in instrument weights or company 
emissions intensity. Weight fluctuations 
result from buy/sell decisions or price 
changes. 

Unlike absolute emissions, portfolio 
and firm emissions intensity is declin-
ing,8 indicating that the rise in absolute 
emissions was mainly due to increased 
activity (revenue – figure 9). The 
effects of other drivers align with the 
absolute emissions analysis: divestment 
– isolated here but potentially part of 
the quantity effect – remains the 
primary factor, followed by a slight 
upward impact from buy/sell decisions, 
while price fluctuations help reduce 
intensity. 

Effects of sector allocation and stock 
selection on emissions intensity
The initial absolute emissions model 
identified sector contributions but did not 
clarify whether reductions resulted from 
decreased sector exposure or intra-sector 
reallocations. This fourth model separates 
sector allocation from stock selection 
while isolating the divestment effect, 
focusing only on remaining instruments9 
(figure 10a). In a context of significant 
price fluctuations, adjustments further 
distinguish the effects of quantity and 
price changes on these weights (figure 
10b).

Even after accounting for divestment, 
the portfolio’s intensity reduction is 
mainly driven by sector allocation, 
shifting from brown to green sectors. 
However, stock selection within sectors 
increases intensity, as GS-HI’s weight 
rises relative to GS-LI. From a climate 
impact perspective, sector allocation 
may artificially reduce emissions by 

7. Attribution of change in absolute emissions by asset class and 
sector

8. Attribution of change in absolute emissions by divestment, 
reallocation, financial fluctuations and company emissions

9. Attribution of change in intensity per revenue by divestment, 
allocation, price fluctuations and company intensity
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Note: Analysis of a fictitious portfolio using LMDI.

Note: Analysis of a fictitious portfolio using LMDI.

6  Either due to the company’s involvement in controversial activities or an unsuccessful engagement campaign.
7  In this case, the ‘divestment’ effect will be decomposed as:
 ∑j∈𝒫Divested instrumentsEj

p  = ∑j∈𝒫Divested instruments in list Ej
p + ∑j∈𝒫Divested instruments not in list Ej

p .
8  This results from BS-LI maintaining a constant intensity, while GS-HI and GS-LI show decreasing intensities.
9 A driver capturing the weight change of remaining instruments relative to divested ones is introduced, isolating 
sector allocation and stock selection effects for retained stocks. Without this, BS-LI's sector allocation effect would be 
skewed by BS-HI's exclusion.



SUMMER 2025

EDHEC Research Insights  13

2 emissions, whereas Scope 1 emissions 
increased (figure 11). Since companies 
cannot control the local electricity mix, 
they have more leverage over Scope 1 
emissions tied to operations. Differentiat-
ing production efficiency, inflation, and 
emissions scopes helps portfolio managers 
refine engagement strategies.

Reconciling the absolute emissions, 
intensity and footprint emissions metrics
The attribution models have been used to 
analyse different portfolio emissions, 
demonstrating the flexibility of the 
generalisation approach. Depending on 
the context, certain metrics may be more 
relevant than others. A key advantage of 
attribution analysis is its ability to 
explicitly link these metrics. Specifically, 
absolute portfolio emissions can be 
expressed in terms of intensity and 
footprint metrics. As presented before:



( )

p
p j

j
Absolute emissions associated with instrument j

E E=∑

Absolute emissions for each instru-
ment can be calculated as the product of 
the portfolio value and the carbon 
footprint of the associated company.
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, . i j

p p j
j i j

Footprint

Absolute emissions

E
E V w

EVIC
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

Company emissions can be expressed 
as the product of the company’s emissions 
intensity and revenue.
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1, . . .i j
p p j i j

j i j i j
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E
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

Using this model, all drivers influenc-
ing absolute emissions, emissions 
intensity, and footprint become visible, 
allowing for a unified analysis of each 
metric’s evolution.

Adjusting the portfolio’s emissions 
footprint for EVIC inflation alters the 
EVIC driver’s attribution results but 
leaves the effects of key investor-driven 
factors unchanged. Applying an inflation 
adjustment to the emissions footprint or 
using a model with an EVIC driver 
accounts for financial instrument price 
inflation, but combining both methods 

11. Attribution of change in intensity by allocation, inflation and 
scope

0

50

100

150

200

250

300

Portfolio t1Production intensity 
Scope 2

Production intensity 
Scope 1

InflationAllocation & pricePortfolio t0

295.0

-99.5

-36.5
-26.7

181.2
49.0

tC
O 2e/$

m 
(Re

ve
nu

e)

Divested assets Remaining assets

Note: Analysis of a fictitious portfolio using LMDI.

10. Attribution of change in intensity per revenue by divestment, 
sector allocation, stock selection and company intensity
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lowering exposure to high-emission 
sectors and should not be prioritised.10 

Effects of company emissions and inflation 
on emissions intensity
The first two models showed rising 
company emissions, with the third linking 
this to revenue growth, while emissions 
intensity declined slightly. However, 
monetary intensity is inflation sensitive. 

10 The IIGCC (2023) recommends that net-
zero benchmarks prioritise real-world ‘organic’ 
decarbonisation over ‘paper’ decarbonisation and 
supports a sectoral approach.
11 In our example, we use individual company production 
data. When unavailable, company revenues can be 
adjusted using a sectoral inflation factor. 

Adjusting for inflation clarifies whether 
intensity changes stem from production 
efficiency or inflation effects.11 Specific 
drivers are also introduced for each 
emissions scope.

This last model finds inflation signifi-
cantly reduced emissions intensity (per 
revenue), while physical intensity (eg, 
CO₂ per tonne of steel) rose. The decline 
in physical intensity is mainly from Scope 
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adds no further value.

Conclusion
Since 2022, several attribution frame-
works have emerged to clarify the 
emissions drivers in financial portfolios. 
This article examines their key differences 
and explores how they can be effectively 
combined.

Most frameworks focus on historical 
analysis of absolute emissions, emissions 
intensity, and equity portfolio emissions. 
Their identified drivers fall into four 
categories: data coverage, portfolio 
reallocation, economic and financial 
fluctuations, and company emissions.

Two methods attribute changes in 
emissions metrics: the Laspeyres indica-
tors and the logarithmic mean Divisia 
index (LMDI). Laspeyres is preferred for 
two-driver models, while LMDI is better 
for multiple drivers, as it eliminates 
interaction terms.

The drivers in these frameworks 
complement each other rather than serve 
as substitutes. A flexible three-step model 
integrates them, allowing investors to 
assess the impact of asset class allocation, 
divestment, sector allocation, stock 

selection, price volatility, emissions 
scopes, company activity and inflation on 
portfolio emissions metrics.

By integrating drivers from existing 
frameworks, investors can better identify 
emissions changes, distinguishing 
between exogenous factors and those they 
can influence, either directly (eg, alloca-
tion, divestment, stock selection) or 
indirectly (eg, corporate emissions 
through engagement). Attribution analysis 
is thus critical for constructing and 
monitoring a climate investment strategy.
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This study1 examines the 
informational overlap between 
environmental, social, and 
governance (ESG) scores and ESG 
exclusionary screening strategies 
within equity portfolios. 

Key takeaways

While ESG scores are widely used 
for integrating sustainability 
considerations in portfolio 
management, they may not fully 
align with exclusion criteria 
targeting companies engaged in 
controversial activities or behaviour. 

By comparing the results of both 
approaches on a set of 417 indices, 
the analysis reveals that reliance on 
ESG scores alone omits a substantial 
proportion of companies that fail to 
meet ʻdo no harmʼ criteria. 

However, the results show that 
exclusion strategies can enhance 
a portfolio’s ESG score, suggesting 
a complementary role in achieving 
sustainable investment objectives.

Do ESG scores and 
ESG screening tell 

the same story?
Assessing their information overlap

Vincent Bouchet, Director of ESG and Climate Research, 
Scientific Portfolio; Jenna Jones, Product Specialist, Scientific 

Portfolio; Mathieu Joubrel, Co-Founder and CEO, ValueCo; 
Aurore Porteu de La Morandière, Product Specialist, 
Scientific Portfolio; Shahyar Safaee, Deputy CEO and 
Business Development Director, Scientific Portfolio

Introduction 
The Global Sustainable Investment 
Alliance (GSIA) defines sustainable 
investment as an “investment approach 
that considers environmental, social and 
governance (ESG) factors in portfolio 
selection and management” (GSIA 
[2021]). Under this broad definition, the 
volume of global sustainable investments 
reached $30.3trn in 2022, representing 
approximately 38% of all professionally 
managed assets. Within sustainable 
investment strategies, exclusionary 
screening, ESG integration2 and engage-
ment represent the most prevalent 
approaches. While these strategies may 
theoretically complement one another, in 
practice, they rely on diverse data sources 
which can lead to inconsistent outcomes. 
This study focuses on examining the 
relationship between exclusion screening, 
guided by ‘do-no-harm’ criteria, and ESG 
integration, guided by ESG scores.

Exclusion screening, historically the 
earliest practice within sustainable 
finance, remains widely adopted despite a 
recent slowdown (GSIA [2023]). The 
Financial Exclusion Tracker Initiative 
reports that exclusions currently empha-
sise climate-related concerns. For 
instance, the EU regulation on climate 
benchmarks mandates exclusion criteria 
concerning fossil fuel-related activities 
and adheres to the ‘do-no-harm’ princi-
ples embedded in the EU Taxonomy. In 
practice, investors implement these 
exclusion thresholds based on data 

detailing companies’ operational activities 
(eg, revenue composition, energy mix) 
and behaviour (eg, controversies).

In contrast, ESG integration has gained 
momentum, driven by client preferences 
and regulatory pressure (GSIA [2023], 
PRI [2023]). Integrating ESG criteria is 
increasingly recognised as part of an 
investor’s fiduciary duty and is a prerequi-
site for claiming alignment with sustain-
able objectives, as outlined in Articles 8 
and 9 of the Sustainable Finance Disclo-
sure Regulation (SFDR). In practice, ESG 
scores – whether proprietary or provided 
by external data providers – are the most 
common data source supporting this 
approach.

To clarify the relationship between 
exclusion screening and ESG integration, 
this study addresses the following 
questions: 
l Do strategies based solely on ESG 
scores naturally shield investors from 
companies whose activities or behaviours 
may cause harm? 
l When combined with ESG integration, 
do exclusion strategies improve ESG 
scores? 

Data and method
These questions are explored through an 
analysis of the composition of 417 
diversified indices from the Developed 
Europe and US investment regions, as of 
October 2024.

To capture the variety in exclusion 
practices – including themes, criteria and 

1 For the original unabridged version of this paper, see: 
https://scientificportfolio.com/pdfs/2024-12-do-esg-
scores-and-esg-screening-tell-the-same-story.pdf
2 Defined as the “consideration of ESG factors within an 
investment analysis and decision-making process with the 
aim to improve risk-adjusted returns” (GSIA [2023], 7).

mailto:vincent.bouchet%40scientificportfolio.com?subject=
mailto:jenna.jones%40scientificportfolio.com?subject=
mailto:mathieu%40valuecometrics.com?subject=
mailto:aurore.porteudelamorandiere%40scientificportfolio.com?subject=
mailto:shahyar.safaee%40scientificportfolio.com?subject=
https://scientificportfolio.com/pdfs/2024-12-do-esg-scores-and-esg-screening-tell-the-same-story.pdf
https://scientificportfolio.com/pdfs/2024-12-do-esg-scores-and-esg-screening-tell-the-same-story.pdf
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thresholds, three distinct exclusion 
strategies, developed by Porteu de la 
Morandière, Vaucher and Bouchet (2025), 
are considered. The first strategy reflects 
consensus-based exclusion criteria among 
the largest 100 asset owners; the second 
includes additional climate criteria 
defined by the Paris-Aligned Benchmark 
(PAB) standards; the third excludes 
companies that contribute negatively to 
the United Nations Sustainable Develop-
ment Goals (SDGs – see Appendix for 
details on the three strategies). In terms 
of weight excluded, the consensus and 
PAB screens have similar impacts for 
Developed Europe indices, while the SDG 
screen leads to significantly higher 
exclusions (figure 1).

ESG scores have been the subject of 
much debate and are known to vary 
widely across providers. Different 
providers often assign different scores to 
the same company or the same fund. For 
example, among S&P 500 companies, the 
average correlation between ESG ratings 
from six providers is less than 0.5 (Gibson 
Brandon et al [2022]). Furthermore, only 
20% of funds deemed ESG-compliant by 
any one of the three major providers – 
Bloomberg, Morningstar or Refinitiv – are 
classified as sustainable by all three. At 
the company level, Berg, Koelbel and 
Rigobon (2022) show that the divergence 
in ESG scores is mainly explained by 
differences in the measurement of each of 
the underlying ESG attributes, but also by 
different attribute weights, and to a lesser 
extent by differences in the attributes 
included in the scope of these scores.3 To 
account for this heterogeneity in ESG 
scores, this study uses a unique database 
provided by ValueCo that aggregates ESG 
scores from more than five asset managers 
for each equity issuer. ValueCo4 special-
ises in collecting proprietary extra-finan-
cial assessments developed internally by 
asset managers to provide an ESG market 
view, similar to an ESG bid-offer system 
for financial markets.5 Notably, companies 
and indices in the Developed Europe 
region generally have higher average ESG 
scores compared to those in the US region 
(figure 2). 

Limitations of ESG scores in identifying 
harmful companies

The first result from this study is that 
good ESG scores, whether at the company 
level or aggregated index level, are not 
sufficient to guarantee that a company’s 
activities or behaviour align with the do 
no harm criteria. Although indices with 
the best aggregate ESG scores (those in 
the fourth quartile) typically contain 
fewer harmful stocks than those with 
lower ESG scores6, a notable proportion of 
stocks within these high-scoring indices 
should still be excluded according to the 
three exclusion screens. For example, of 
the 97 indices with the best ESG scores in 
the US, 41 hold more than 8% of compa-
nies that are considered harmful accord-
ing to the consensus criteria (by way of 
reference, the US benchmark contains 
14% of such companies – figure 3). 

These results are consistent when 
analysing the constituents of the regional 
benchmarks: the companies with the best 
ESG scores do not necessarily meet the 
do-no-harm criteria. In the Developed 
Europe benchmark, out of the 101 
companies in the top quartile in terms of 

ESG score, nine companies (approxi-
mately 10%) fail to meet the criteria 
associated with the consensus screen. 
This discrepancy can be attributed to 
several factors. 
l Firstly, most of these companies 
operate in the energy and utilities sectors, 
which face structural sustainability 
challenges and are often excluded from 
PAB-aligned portfolios. On the other 
hand, best-in-class ESG scoring 
approaches may identify leaders within 
these sectors and assign them high scores 
for performing better than their peers, 
even though they remain large carbon 
emitters. 
l Secondly, ESG scores often take into 
account a broad range of factors, while 
PAB filters focus on climate-related 
metrics. Good performance or ambitious 
commitment on other environmental 
topics, or regarding social and governance 
challenges, may lead a company to get 
high ESG scores in spite of harmful 
practices and activities from a climate-
focused point of view. 

a) Developed Europe	 Indices (n = 130)	 Benchmark companies (n = 406)
ESG screen	 Average weight excluded	 Number excluded	 Weight excluded

Consensus	 12.5%	 35	 13.3%
PAB	 15.3%	 46	 15.9%
SDG	 55.2%	 176	 58.3%
b) US	 Indices (n = 387)	 Benchmark companies (n = 467)
ESG screen	 Average weight excluded	 Number excluded	 Weight excluded

Consensus	 13.9%	 54	 143.3%
PAB	 19.6%	 68	 17.5%
SDG	 61.2%	 213	 68.7%

a) Developed Europe
Dimension	 Average score (cap-weighted) of indices (n = 130)	 Cap-weighted score of companies (n = 406)

ESG	 59.8	 58.4
E	 56.0	 53.0
S	 56.9	 55.1
G	 68.7	 66.5
b) US
Dimension	 Average score (cap-weighted) of indices (n = 387)	 Cap-weighted score of companies (n = 467)

ESG	 48.6	 48.9
E	 45.7	 41.6
S	 48.3	 51.5
G	 58.2	 57.0

1. Descriptive statistics related to ESG screens

2. Descriptive statistics of ESG scores

Note: This table shows, for each ESG exclusion strategy (ESG screen), descriptive statistics related to the stocks 
that do not meet the criteria defined by the screen. The second column from the left shows the average financial 
weight represented by these stocks in the indices for each region, while the third and fourth columns show the 
number of these stocks and their financial weight within the benchmarks for each region.

Note: This table shows, for each ESG score dimension, descriptive statistics related to the score of the stocks. 
The second column from the left shows the average financial cap-weighted score in the indices for each region, 
while the third and fourth columns show the cap-weighted score of the corresponding regional benchmark. The 
share of companies covered by scores – with a minimum of five independent ratings per company – is on average 
97% for the Developed Europe indices and 94% for the US indices.

3 The respective contributions of ‘measurement’, ‘scope’ 
and ‘weight’ are 56%, 38% and 6%.
4 See https://www.valuecometrics.com/en
5 Scores are normalised between 0 and 100. Unless 
specifically indicated otherwise, the scores used in this 
study are the median scores for each issuer.
6 The difference between the top-quartile (q4) indices 
and those in the second and third quartiles (q2, q3) is not 
statistically significant for Developed Europe indices.
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7 Companies with higher ESG scores also tend to have 
more divergent scores (see Appendix). However, the test 
results remain similar when using the score from the first 
quartile of the score distribution for a given company.
8 In contrast, companies excluded by the SDG filter tend 
to have ESG scores close to the benchmark average.

l Finally, some of these companies are 
actively transitioning towards more 
sustainable practices, which are valued in 
their ESG scores, but still have fossil fuel 
exposure excluded under PAB. The 
forward-looking dimension of ESG scores 
may inflate the results of companies 
showing steady and credible improve-
ments in their practices before they 
actually meet the criteria to be included in 
PAB-aligned portfolios.7

The second result of this study is that 
targeting companies with the lowest ESG 
scores within these benchmarks does not 
allow for proper identification of compa-
nies with harmful activities or behaviours. 
Within the Developed Europe benchmark, 
a selection of the 35 companies with the 
lowest ESG scores – corresponding to the 
number of exclusions under the consensus 
screen – reveals that only 12 companies 
overlap with those identified by the 
consensus filter. Consequently, an 
exclusion approach based on ESG score 
rankings alone would fail to capture 
roughly two-thirds of the companies that 
are deemed to have a negative impact 
according to the consensus criteria. 

Exclusion of harmful companies tends to 
improve ESG score
As outlined in the previous section, ESG 
integration based solely on ESG scores 

may not adequately ensure alignment 
with a ‘do no harm’ principle. This calls 
for an examination of the potential 
compatibility between ESG integration 
and exclusionary screening approaches. In 
particular, it is crucial to assess the impact 
of exclusions on strategies aimed at 
maximising a portfolio’s ESG score.

The analysis suggests that excluding 
harmful stocks does not hinder such 
strategies. On the contrary, exclusions 
tend to have a positive effect on the 

aggregate ESG score. Applying the three 
exclusion screens to the set of indices, 
followed by a proportional reweighting, 
leads to a significant increase in their 
weighted average ESG scores (figure 4). 

These results are consistent when 
analysing the constituents of both 
benchmarks. Companies that do not meet 
the criteria set by the consensus and PAB 
screens typically have ESG scores 
significantly below the average, a trend 
that is especially pronounced among US 
companies8 (figure 5). 

However, the impact of exclusions on 
the aggregate ESG score depends on the 
initial level of the aggregate ESG score. 
For Developed Europe, indices already 
exhibiting a high ESG score (in the fourth 
quartile q4), exclusions have no significant 
positive effect (figure 6). 

As mentioned in the previous section, 
certain companies with high ESG scores 
are excluded, potentially reducing the 
aggregate ESG score of portfolios concen-
trated on these stocks. In our index 
universe, only two indices are subject to a 
(non-significant) reduction in their 
aggregate ESG score.

Conclusion
This study shows that ESG integration 
relying solely on ESG scores does not 
ensure alignment with the ‘do no harm’ 
principles within portfolios. The analysis 
of diversified indices from Developed 
Europe and the US demonstrates that 
exclusionary screening based on ESG 
criteria identifies companies engaging in 

a) Developed Europe	 Indices (n = 130)	 Benchmark (n = 406)
Quartile	 Average score 	 Average weight	 Quartile	 Average score of	 No of benchmark 
	  of indices	 excluded of indices		  benchmark companies	 companies excluded
	 Consensus	 PAB	 SDG	 Consensus	 PAB	 SDG
q1 (n=33)	 55.6	 13.4	 24.4	 60.1	 q1 (n=102)	 45.9	 19.0	 22.0	 54.0
q2 (n=32)	 59.1	 11.3	 13.2	 56.8	 q2 (n=101)	 57.0	 4.0	 8.0	 38.0
q3 (n=32)	 60.8	 6.8	 8.5	 55.0	 q3 (n=102)	 62.1	 3.0	 5.0	 41.0
q4 (n=33)	 63.7	 8.1	 8.8	 49.2	 q4 (n=101)	 68.8	 9.0	 11.0	 43.0

b) US	 Indices (n = 387)	 Benchmark (n = 467)
Quartile	 Average score 	 Average weight	 Quartile	 Average score of	 No of benchmark 
	  of indices	 excluded of indices		  benchmark companies	 companies excluded
	 Consensus	 PAB	 SDG	 Consensus	 PAB	 SDG
q1 (n=97)	 42.6	 20.7	 35.2	 68.6	 q1 (n=117)	 32.4	 40.0	 52.0	 84.0
q2 (n=96)	 48.1	 14.0	 18.3	 61.1	 q2 (n=117)	 47.3	 5.0	 7.0	 42.0
q3 (n=96)	 50.1	 11.5	 15.3	 59.9	 q3 (n=116)	 53.7	 2.0	 2.0	 42.0
q4 (n=97)	 53.6	 7.0	 8.1	 55.1	 q4 (n=117)	 62.1	 7.0	 7.0	 44.0

3. Impact of exclusion according to the ESG score quartile at the 
indices level and at the benchmark companyʼs level

Note: This table shows the evolution of the weight of stocks that do not meet the ʻdo no harmʼ criteria associated 
with the three screens, as a function of the ESG score. The left columns show the average weight of these stocks 
for different indices grouped by quartile according to their EGS score (indices in q4 are those with the highest 
scores), while the right-hand columns do the same for benchmark stocks. 

4. Evolution of the distribution of ESG scores of indices after
exclusion
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harmful activities or behaviours that ESG 
scores alone may fail to identify. How-
ever, these two approaches are not 
incompatible. Applying exclusion screens 
generally improves the weighted average 
ESG scores of indices, indicating that 
exclusions can complement ESG 
integration by refining portfolio quality 
without detracting from ESG perfor-
mance. These findings highlight the 
potential for exclusionary practices to 
reinforce ESG integration, supporting 
the creation of more sustainable and 
resilient investment portfolios. The 
natural next step would be to anticipate 
the financial impact of such exclusions, a 
topic which is covered in Porteu de la 
Morandière, Vaucher and Bouchet (2025) 
where they find that applying exclusions 
either based on consensus criteria or 
climate criteria has a relatively low 
impact on the financial risk profile of 
indices and that this impact can be 
further reduced with an optimised 
reallocation. 
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a) Developed Europe	
Score	 Average score of constituents 	 Average of constituents that do not meet the criteria
	 Consensus	 PAB	 SDG
ESG	 58.4	 51.2	 52.5	 57.1
E	 53.0	 51.7	 52.5	 53.3
S	 55.1	 49.5	 51.2	 53.7
G	 66.5	 67.8	 66.8	 67.0

a) US	
Score	 Average score of constituents 	 Average of constituents that do not meet the criteria
	 Consensus	 PAB	 SDG
ESG	 48.8	 33.1	 33.4	 44.8
E	 41.6	 40.9	 41.1	 40.6
S	 51.5	 51.3	 48.9	 48.9
G	 57.0	 56.8	 55.4	 55.4

a) Developed Europe		  Indices (n = 130)	
Quartile	 Average score of indices 	 New weighted average indices scores after exclusion
	 Consensus	 PAB	 SDG
q1 (n=33)	 55.6	 58.3	 58.6	 59.0
q2 (n=32)	 59.1	 60.3	 60.4	 60.8
q3 (n=32)	 60.8	 61.1	 61.1	 61.6
q4 (n=33)	 63.7	 63.6	 63.6	 63.7

b) US		  Indices (n = 387)	
Quartile	 Average score of indices 	 New weighted average indices scores after exclusion
	 Consensus	 PAB	 SDG
q1 (n=97)	 42.6	 46.2	 47.7	 48.7
q2 (n=96)	 48.1	 50.4	 51.2	 52.1
q3 (n=96)	 50.1	 51.7	 52.4	 53.6
q4 (n=97)	 53.6	 54.2	 54.4	 55.6

5. Score of benchmark constituents with controversial activities or 
behaviour

6. Impact of exclusion on the weighted average scores of the 
indices by quartile

Note: This table shows the average score (ESG, E, S and G) of stocks that do not meet the ʻdo no harmʼ criteria 
of the different ESG screens within each regional benchmark. Stocks corresponding to companies that do not 
comply with the consensus and PAB screens have significantly lower ESG scores than the other benchmark 
constituents. 

Note: This table shows the changes in the cap-weighted average ESG score of indices after different ESG 
exclusion strategies, according to the starting ESG score of these indices (by quartiles). For Developed Europe 
indices already exhibiting a high ESG score (q4), none of the exclusion strategies have a significant effect.
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Appendix – ESG exclusion screens
The consensus screen is based on an 
analysis of the exclusion policies of the 
world’s 100 largest asset owners. This 
analysis resulted in a set of four criteria 
most frequently used by asset owners 
that define the screen: the controver-
sial weapons industry, the tobacco 
industry, the coal industry and 
controversies related to the United 
Nations Global Compact (UNGC) 10 
principles.9 

The PAB screen is based on the 
minimum standards10 that define EU 
Climate Transition Benchmarks and 
Paris-aligned Benchmarks. In addition 
to minimum reduction of greenhouse 
gas footprint (not considered in this 
article), these standards define 
exclusion criteria related to climate 
change (coal and fossil fuels industries) 
and to sustainable development 
(tobacco and controversial weapons 
industries, controversies related to the 
UNGC principles). 

Finally, the sustainable development 
goals or SDG screen is based on the 
United Nations Sustainable Develop-
ment Goals framework adopted in 
2015. This framework consists of 17 
goals and 169 targets to be achieved by 
2030, covering social, environmental, 
and economic issues. The exclusion 
criteria of the corresponding screen 
cover any activities or behaviour that 
would hinder the achievement of these 
goals and targets (the complete 
methodology for the three screen is 
available in Porteu de la Morandière, 
Vaucher and Bouchet [2025]).

ESG score dispersion
Within the EU benchmark, companies 

with high ESG score – including those 
that are excluded by the different ESG 
screens – exhibit a high dispersion in 
their ESG scores (figure 7), potentially 
indicating that while these companies 
perform well in most ESG areas, 
certain aspects of their operations are 
heterogeneously penalised by the 
different asset managers rating scales. 
Another interpretation could be a 
misalignment between the reporting 
and the actual performance of these 
companies on ESG topics. When they 
under-report or, on the contrary, 
indulge in greenwashing, ESG data 
providers have different methodologies 

to estimate the gaps or penalise 
misleading claims. The data sources 
employed by investors for their 
responsible investment strategy may 
therefore introduce divergence in the 
resulting scores. This is not the case for 
the US index, where ESG score 
dispersion is already high across the 
board, reflecting broader variability in 
how companies are evaluated by the 
different asset managers.

a) Developed Europe	
Quartile	 Average ESG scores dispersion of	 Average ESG scores dispersion of the companies excluded 
	 the companies in the benchmark
	 Consensus	 PAB	 SDG
q1	 77.1	 74.8	 74.9	 76.7
q2	 78.6	 76.5	 76.4	 77.1
q3	 79.0	 74.5	 73.0	 76.4
q4	 79.3	 81.0	 81.0	 80.0

b) US	
Quartile	 Average ESG scores dispersion of	 Average ESG scores dispersion of the companies excluded 
	 the companies in the benchmark
	 Consensus	 PAB	 SDG
q1	 84.8	 83.4	 84.1	 85.1
q2	 76.8	 76.4	 77.4	 75.5
q3	 76.2	 83.8	 83.8	 77.2
q4	 75.4	 76.1	 76.1	 76.1

7. Dispersion of ESG scores

Note: This table shows the dispersion of ESG scores for benchmark constituents according to their initial 
ESG score (stocks are grouped by quartiles), and according to whether they are excluded by different ESG 
screens (right columns). The dispersion score is expressed between 0 (no dispersion) and 100 (maximum 
dispersion) and corresponds to the deviation from the average of the scores given by the different asset 
managers.

9 The 10 principles are available at: https://
unglobalcompact.org/what-is-gc/mission/principles
10 Commission Delegated Regulation (EU) 2020/1818.
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Do ESG exclusions have 
an effect on portfolio risk 

and diversification?
Aurore Porteu de La Morandière, ESG Researcher, Scientific Portfolio; 

Benoit Vaucher, Head of Research, Scientific Portfolio; Vincent 
Bouchet, Director of ESG and Climate Research, Scientific Portfolio

Exclusion/negative screening is the 
most popular methodology used 
to integrate environmental, social 
and governance (ESG) criteria into 
investment strategies. It consists 
of excluding instruments issued 
by companies that do not meet the 
criteria defined in the manager’s 
investment policy. This method is 
often applied in passive investment 
strategies that combine exclusion 
criteria with index replication. In 
this article (a summary of a recent 
research paper1), we examine the 
impact of exclusion policies on the 
financial risks of 493 indices from 
Developed Europe and the US. To 
address varying ESG criteria, we 
built three screens: one based on 
consensual criteria among asset 
owners, another incorporating 
additional climate criteria, and 
a third eliminating companies 
negatively impacting any United 
Nations Sustainable Development 
Goal. The first two screens show 
limited impact on index risks, 
especially when using optimised 
reallocation.

Key takeaways:

On a sample of 128 European 
indices, the application of our 
ESG screens leads to an average 
excluded weight of 9%, 10% and 58% 
for our consensus, climate and SDG 
screens, respectively; on a sample 
of 365 US indices, it results in an 
average exclusion of 19%, 23% and 
67%, depending on the screen.

Applying ESG screens with a naïve 
(pro rata) reallocation method 
results in a median tracking error 
between 0.9% and 4.7%, varying by 
screen and region. Sector deviations 
are most significant in the energy 
and utility sectors. Exclusions 
increase exposure to the Fama and 
French (2015) ‘profitability’ factor 
while slightly reducing exposure 
to ‘investment’ and ‘value’ factors. 
Using an optimised reallocation 
method reduces the tracking error 
by 0.3% and 1.6% and minimises 
factor exposure deviations. 

ESG screens often reduce carbon 
footprint. With naïve reallocation 
scheme, reductions can reach up 
to 54% after PAB screening in the 
US sample. However, this reduction 
does not occur when using optimised 
reallocation. 

Introduction
Exclusion, the oldest practice in sustain-
able finance (Schueth [2003]), remains 
very popular, with about $3,840bn of assets 
under management (AUM) subject to 
negative screening, and $1,807bn subject 
to norm-based screening, out of $30,321bn 
in total sustainable AUM (GSIA [2023]). 
Despite variations in motivation, criteria 
and thresholds, exclusion remains a 
foundational sustainable strategy. Based on 
a review of the academic literature, 
Bouchet and Safaee (2024) highlight that 
the main building blocks that investors 
ought to consider – themes, levers 
(including exclusion, allocation and 
engagement) and data – are interdepend-
ent and propose four families of coherent 
sustainable investment strategies. Although 
each strategy targets a specific type of 
extra-financial impact, all incorporate 
exclusion (figure 1). This study focuses on 
exclusions based on environmental, social 
and/or governance (ESG) criteria that can 
contribute to these strategies.

Exclusion reduces a company’s access to 
capital, raising its market-implied cost of 
equity and pressuring it to reform if the 
cost of change is lower than the share price 
loss2 (Heinkel et al [2001], Pástor et al 
[2021], De Angelis et al [2022]). The effects 
of exclusion are also indirect: Bergman 
(2018) highlights the public discourse shift 
over the low-carbon transition and 
Braungardt et al (2019) show the positive 
effects of the divestment movement on 
effective climate policy development. 
Bouchet and Safaee (2024) conclude that 
exclusion is relevant in three main 
situations: for consensus non-sustainable 
activities such as human rights violations, 
when other levers such as shareholder 
engagement have failed, or when it is a 
moral imperative for investors.

Whatever the extra-financial motiva-

1 Porteu de La Morandière, A., B. Vaucher and V. Bouchet (2024). Do Exclusions Have an Effect on the Risk Profile of Equity 
Portfolios?  Scientific Portfolio Publication, September.
2 Bouchet and Safaee (2024) highlight that companies may grow without relying on equity markets, challenging this 
mechanism.

mailto:aurore.porteudelamorandiere%40scientificportfolio.com?subject=
mailto:benoit.vaucher%40scientificportfolio.com?subject=
mailto:vincent.bouchet%40scientificportfolio.com?subject=
mailto:vincent.bouchet%40scientificportfolio.com?subject=
https://scientificportfolio.com/pdfs/2024-09-do-exclusions-have-an-effect-on-the-risk-profile-of-equity-portfolios.pdf
https://scientificportfolio.com/pdfs/2024-09-do-exclusions-have-an-effect-on-the-risk-profile-of-equity-portfolios.pdf
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3 We approximate the index compositions by using those 
of ETFs that closely track them
4 The 10 principles are available at: https://
unglobalcompact.org/what-is-gc/mission/principles

tion, asset owners need to anticipate the 
financial impact of ESG exclusion. 
However, the existing literature presents 
contradictory results. The lack of 
consensus on the relation between ESG 
exclusion and financial performance 
might be explained by differences in 
sample characteristics (region, period, 
size) and the diversity of exclusion 
criteria. This is supported by Plagge 
(2023), who shows that the direction of 
the financial impact of ESG exclusions on 
portfolio returns depends on both the 
exclusion criteria and the region sample 
to which they are applied. More recently, 
Porteu de la Morandière et al (2024) 
analysed the effects of applying some 
climate-related exclusion criteria on fund 
risks rather than their short-term 
performance, arguing that the fund’s risk 
profile is responsible for its long-term 
performance, and should thus be a 
primary concern for asset owners. 
Focusing on a sample of sustainable 
funds according to the European Union 
(EU) sustainable finance disclosure 
regulation (SFDR), their results suggest 
that excluding climate-related controver-
sial stocks would have a limited impact 
on the funds’ tracking error, sector 
exposure or factor exposures. 

Our research aims to extend the work of 
Porteu de la Morandière et al (2024) on two 
levels. Firstly, we include both conventional 
and sustainable instruments with a sample 
of 493 indices domiciled in Europe and the 

Strategy	 Targeted companies	 Themes	 Levers
			   Exclusion	 Allocation	 Shareholder engagement & 
					     field building

Sustainable	 Company behaviour and	 All	 Covering all SDGs,	 Optimising risk and	 Publication of exclusion list 
	 activities'do no harm'		  based on revenues,	 return under 
	 to any of the SDGs		  metrics, controversies	 exclusion constraints
Transition	 Company behaviour and	 Specific	 Companies not prioritised	 Optimising risk and	 Systematically engaging on 
	 activities'do no harm'		  for engagement	 return under exclusion	 issues related to the specific
	 to certain SDGs but		  +	 and sustainability	 theme chosen
	 where change is possible		  Companies where 	 exposure (min/max share	 Publication of targets,
			   engagement has failed	 of ‘transition’ companies	 engagement outputs and
					     exclusion list
Solutions	 Company activities	 Specific	 Covering all SDGs, based 	 Optimising risk and return	 Focusing on enagement
	 contribute positively		  on revenues, physical 	 under exclusion and	 related to activities (strategy,
	 to specific SDGs		  metrics, controversies	 sustainability exposure	 investments)
				    (minimum share of ‘positive
				    contribution companies̓
Ethical	 Company behaviour and	 All	 Based on subjective 	 Optimising risk and 
	 activities are in line with		  preferences	 return under exclusion
	 ethical choices			   constraints

1. Exclusion as a foundation for coherent sustainable strategies

This table outlines four coherent sustainable equity strategies. The sustainable strategy ensures portfolio 
alignment with companies that ‘do no harm’ on environmental and social issues. The transition strategy seeks to 
reform companies with negative impacts. The solutions strategy prioritises investments in companies addressing 
specific sustainability challenges. The ethical strategy aligns investments with personal or religious values. 
Source: Bouchet and Safaee (2024)

US. Secondly, the exclusion criteria are not 
limited to climate change-related activities 
but cover broader ESG issues. Given the 
complexity of ESG criteria, we define three 
exclusion screens, with increasing impacts, 
that correspond to common sustainable 
investment policies. The first screen, termed 
consensus, involves consensus exclusion 
criteria; the second screen incorporates 
additional climate net criteria defined in the 
Paris-aligned Benchmarks (PAB) standards; 
the third screen excludes stocks that 
contribute negatively to Sustainable 
Development Goals (SDGs). 

We find that ESG screening excludes 
10-60% of weights in 128 European 
indices and 20-70% of weights in US 
indices. A naïve (pro rata) reallocation 
results in a median tracking error of 
0.9-4.7%, with a 1.5% increase per 10% of 
excluded weights. Sector deviations occur 
mainly in energy and utilities. ESG 
exclusions tend to increase exposure to 
the profitability factor while slightly 
reducing exposure to investment and 
value factors, depending on the screen 
and the sample region. The reallocation 
method significantly impacts tracking 
error and factor deviations. The optimised 
reallocation method lowers median 
tracking error by 0.3-1.6% and reduces 
factor deviations. With this approach, 
every 10% of excluded weights increases 
tracking error by 1.1%, compared to 1.5% 
in naïve reallocation. ESG screening 
followed by a naïve reallocation reduces 

carbon footprint (up to 54% after the PAB 
screening on the US sample) while the 
ESG screening followed by an optimised 
reallocation has no significant impact on 
carbon footprint reduction.

These results suggest that reducing the 
investment universe to build a sustainable 
index can lead to a relatively low impact 
on its financial risk profile, which can be 
further reduced with an optimised 
reallocation method. However, if the 
strategy is to reduce its carbon footprint, 
the optimised reallocation should be 
constrained to reduce risk while maintain-
ing maximum carbon footprint reduction.

Data and model
We analyse 493 indices using three ESG 
screens, assessing tracking error, sector 
deviations, and risk factor exposure under 
two reallocation methods: naïve (pro rata) 
and optimised. Tracking errors are 
evaluated using a covariance matrix based 
on stock returns from December 2018 to 
December 2023.

Sample of financial instruments
Our sample includes 128 developed 
European indices (208 equities in average) 
and 365 US indices (306 equities in 
average), selected from an initial sample 
of 517 indices.3 Indices were excluded if 
they had less than a year of historical 
data, over 1% exposure to emerging 
markets or incomplete composition 
covering under 85% of the capital invested. 

Environmental, social, and governance 
screens
We define three ESG screens reflecting 
investor strategies. The consensus screen, 
based on the policies of the 100 largest 
asset owners, excludes weapons, tobacco, 
coal and controversies related to the 
United Nations Global Compact (UNGC) 
10 principles.4 The PAB screen follows EU 
Climate Transition and Paris-aligned 
Benchmarks and excludes fossil fuels and 
industries misaligned with sustainable 
development. The SDG screen aligns with 
the UN’s 17 Sustainable Development 
Goals (SDGs) and excludes activities that 
hinder their achievement.

Risk metrics and sustainability indicator
We assess the impact of ESG exclusions 
using tracking error, sectors deviations, 
and deviations in exposure to Fama-
French (2015) risk factors, including 
momentum. Additionally, we analyse 
their effect on portfolio carbon footprint. 
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2. Distribution of indices weight excluded by screen and region

3. Distribution of indices weight excluded by screen, region and type
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Naïve and optimised reallocation
We apply two methods to reallocate the 
weights of the excluded stocks. First, the 
naïve method corresponds to a pro rata 
reweighting of the index’s remaining stocks.5 
This method assumes that an investment 
manager sells the controversial equities and 
reinvests in the remaining equities propor-
tionally to their initial weight. 

Second, the optimised method relies on 
a tracking error minimisation between the 
original portfolio wold and the new 
portfolio wnew. The reallocation is the 
solution to the minimisation program:

( ) ( )T

new w old oldw argmin w w w w= − Ω −

using a Ledoit and Wolf (2003) normal-
ised covariance matrix (Ω) for ex-post 
tracking error estimation.6 Portfolios 
remain long-only with equal capital 
investment before and after reallocation. 
The strategy reduces the impact of the 
ESG exclusions on the risk of the portfolio 
by reinvesting in stocks with similar risk 
profiles to excluded equities.

Results
This section presents the impact of ESG 
screens on excluded index weights, 
followed by their effects on risk profiles, 
including tracking error, sector deviation, 
factor exposure under naïve reallocation. 
We then show how optimised reallocation 
mitigates these effects and examine the 
varying impact of ESG exclusions on 
carbon footprint depending on the 
reallocation method.

Excluded weight of the indices
The impact of excluded weight varies by 
region (Developed Europe, US), and ESG 
screen (consensus, PAB, SDG). In Devel-
oped Europe, the consensus and PAB 
screens exclude a median of 9%, while the 
SDG screen excludes 58%. In the US, the 
consensus and PAB screens have twice the 
impact (20% median exclusion), while the 
SDG has a similar effect (67% – figure 2). 

The impact varies by index theme 
(ESG, energy, utilities or other). Energy 
and utilities indices are most affected by 
the consensus and PAB screens due to 
fossil fuel-related exclusions. ESG indices 
are less impacted by these screens but are 
not shielded from the SDG screen, which 
excludes stocks beyond common ESG 
strategies. This suggests most ESG indices 
do not fully align with all SDGs (figure 3).

5 During reallocation, the fund’s equity portion remains 
constant to maintain tracking error and factor exposure 
consistency. If 15% of a fund’s 85% equity allocation is 
excluded, it is proportionally redistributed across the 
remaining 70% while preserving the total equity allocation.
6 All prices are in US dollars.

Source: Authors’ calculation. The red marks represent the reference index for each region: the 410 largest 
companies (Developed Europe) and the 500 largest companies (US), both weighted by market capitalisation.

Source: Authors’ calculation. The index themes are classified based on their names. The ESG category includes 
indices containing terms like ESG, screen, climate, transition, change, SRI, PAB, sustainability.
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4. Impact of ESG exclusions on the tracking error between the 
screened and original index portfolio (naïve reallocation)

5. Impact of ESG exclusions on sector deviations after naïve 
reallocation
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Impact of ESG exclusions on the risk profile 
of indices with naïve reallocation
ESG exclusion followed by naïve realloca-
tion introduces tracking error. For 
Developed Europe indices, the median 
tracking error is 0.9% for the consensus 
screen and 4.7% for the SDG screen. In the 
US, where exclusions are higher, the 
impact is greater, with tracking error 
ranging from 1.5% (consensus screen) to 
4.7% (SDG screen). Across regions and 
screens, tracking error increases relatively 
linearly with exclusions. Each additional 
10% in excluded weight raises tracking 
error by about 1.5% (figure 4).

The impact of ESG exclusions on 
tracking error relative to the regional 
cap-weighted benchmark is uncertain. 
The median increase is 0.2% for the 
consensus screen (Developed Europe and 
US) and up to 2.3% for the SDG screen 
(Developed Europe, 1.7% for US). Unlike 
tracking error relative to the initial index, 
the relationship between excluded weight 
and tracking error change is not signifi-
cantly increasing, likely due to the wide 
distribution of the initial tracking errors.

The impact of ESG exclusions on the 
tracking error, relative to both the initial 
index and benchmark, can be explained by 
sector and factor exposure deviations.

Sector deviations are most pronounced 
in energy and utilities across all regions 
and screens, with SDG screening also 
affecting the non-cyclical consumer 
sector. These deviations stem from 
fossil-fuel exclusions and criteria related 
to the environment, human rights and 
ethical controversies. However, deviations 
do not scale linearly with excluded weight. 
For example, in Developed Europe, the 
PAB screen excludes 10% of weight with a 
2.5% median sector deviation, while the 
SDG screen excludes 60% with only a 5% 
deviation. Positive sector deviations result 
from naïve reallocation, where sectors 
with higher initial weights experience the 
largest increases.

ESG exclusions tend to increase 
exposure to higher ‘profitability’ stocks 
while reducing exposure to ‘investment’ 
and ‘value’ stocks across regions and 
screens. Excluded stocks are typically 
more exposed to ‘value’ and ‘investment’ 
factors and less to ‘profitability’ than the 
overall index, shifting the screened index’s 
factor composition. These results align 
with Porteu de la Morandière et al (2024) 
and are statistically significant, confirming 
a consistent impact on indices.

Impact of ESG exclusions on the risk profile 
of indices with optimised reallocation
The impact of ESG exclusions on index 
risk is limited for the consensus and PAB 
screens under naïve reallocation, with 

Source: Authors’ calculation. Note: Tracking errors are calculated using a Ledoit and Wolf (2003) normalised 
sample covariance matrix. 

Source: Authors’ calculation. Note: The yellow bars represent the distribution mean, while black bars represent 
the standard error of the mean, calculated as the standard deviation divided by the square root of the sample 
size. This measures the dispersion of sample means around the population mean.
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median tracking errors of 0.9% (Developed 
Europe) and 1.5% (US). However, indices 
heavily weighted in affected sectors can 
see tracking errors exceed 10%, particu-
larly under the PAB screen (2% of 
Developed Europe and 3% of US indices). 
The SDG screen has a greater effect, with 
a median tracking error of 4.7%. 

Using the optimised reallocation 
method significantly reduces the tracking 
error and factor deviations but does not 
always mitigate sector deviations. The 
ability to materially reduce factor 
exposure deviations is a particularly 
welcome benefit of the optimised 
reallocation method and aligns with 
Plagge (2023), who found no significant 
alphas from ESG exclusions once Fama 
and French (2015) factors were con-
trolled. Investors with fiduciary duties 
may favour optimised reallocation for 
minimising ESG exclusions’ impact on 
long-term expected returns.

For Developed Europe indices, 
optimised reallocation reduces tracking 
error by -0.3%7 (consensus screen) and 
-1.6% (SDG screen) compared naïve 
reallocation (-0.5% to -1.4% for US indices 
– figure 7). The relationship between 
excluded weight and tracking error also 
weakens: with each 10% exclusion 
increasing tracking error by 1.2% versus 
1.5% under naïve reallocation. These 
reductions primarily stem from lower 
factor exposure deviations (figure 8), 
while sector deviations remain largely 
unchanged. 

Impact of ESG exclusions on the carbon 
footprint of indices
Environmental exclusions tend to reduce 
portfolio weighted average carbon 
footprint with naïve reallocation, but not 
necessarily with optimised reallocation. 

Naïve reallocation under the consensus 
and PAB screens reduces portfolio carbon 
footprint reduction consistent with their 
coal and fossil fuels exclusion criteria. For 
Developed Europe, reductions are 22% 
(Consensus) and 29% (PAB), while US 
reductions are 30% and 54%. These 
reductions are mostly explained by sector 
deviations (energy and utilities), which 
might not be the most efficient way to 
decarbonise indices (Bouchet [2023]). For 
a ‘transition’ or ‘solutions’ investment 
strategy, this lever of exclusion should be 
supplemented by other allocation 
constraints designed to guarantee a 
minimum of sustainable exposure (figure 
1). 

The SDG screen does not significantly 
reduce carbon footprints (figure 9). While 
it includes climate-related criteria like the 

6. Impact of ESG exclusions on factor deviations after naïve 
reallocation

7. Reduction in tracking error between optimised and naïve 
reallocation
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Source: Authors’ calculation. Note: Annualised tracking errors of reallocated indices versus initial indices, using a 
Ledoit and Wolf (2003) normalised covariance matrix.

7 Median.



SUMMER 2025

EDHEC Research Insights  25

8. Reduction in factor factor deviation between optimised and naïve 
reallocation

9. Reduction of the carbon footprint of screened indices after the 
naïve reallocation by weight of stock excluded
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PAB screen, its broader social and 
governance exclusions also remove 
companies with very low carbon intensi-
ties, leading to inconsistent impact across 
indices.

Optimised reallocation reduces the 
financial impact of ESG exclusions but 
results in a smaller carbon footprint 
reduction than naïve reallocation. For 
example, US indices with the consensus 
screen see a 30% carbon footprint 
reduction with the naïve reallocation 
but only 22% with the optimised 
reallocation. This occurs because 
optimised reallocation tends to replace 
excluded stocks by their closest equiva-
lent in terms of risk profile, while the 
naïve scheme favours the largest 
capitalisations, which are in the 
technology and financials sectors, two 
sectors that have much lower carbon 
footprint than the benchmark average. 
Thus, optimised reallocation can 
increase exposure to carbon-intensive 
sectors. For example, 50% of the 
Developed Europe indices screened with 
the PAB screen followed by an optimised 
reallocation are more exposed to the 
energy sector than these indices after a 
naïve reallocation. 

Conclusion
Excluding stocks of companies involved in 
controversial activities is common in 
sustainable investment strategies, but 
asset-owners must anticipate the financial 
impact of such exclusions. This article 
explores the effects of ESG exclusions on 
financial risks.

We propose three ESG exclusion 
screens with increasingly stringent 
criteria: the consensus screen based on 
common asset-owner criteria; the PAB 
screen aligned with EU PAB standards; 
and the SDG screen tied to the UN’s 17 
Sustainable Development Goals. We 
analyse the impact of these ESG exclu-
sion screens on tracking error, sector 
allocation, risk factor exposure, and 
carbon footprint across 493 Developed 
Europe and US indices. The analysis uses 
two reallocation methods: a naïve 
method based on initial weights and an 
optimised method minimising tracking 
error. 

The three ESG screens result in 
excluded weights ranging from 10% to 70%, 
varying by screen and region. A naïve 
reallocation yields a median tracking error 
of 0.9% to 4.7%, with sector deviations 
mainly in energy and utilities. Exclusions 
increase exposure to profitability while 
slightly reducing investment and value 
factors. An optimised reallocation 
materially reduces tracking error and 
factor deviations, making it preferable for 
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investors subject to fiduciary responsibili-
ties per Plagge (2023). While naïve 
reallocation systematically lowers carbon 
footprints, optimised reallocation has no 
significant impact on carbon footprint 
reduction.

Exclusions based on consensus or 
net-zero criteria can have limited impact 
on financial risk, which can be further 
reduced with optimised reallocation. 
However, reducing carbon footprints 
require additional constraints to avoid 
unintended effects. Future research could 
explore the impact of sustainability 
measures beyond exclusions, such as 
reducing emissions or financing solutions 
aligned with sustainable development 
goals, on index risk profiles.
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Key takeaways

Diversification, especially when 
based on risk contributions, reduces 
the likelihood of extreme losses, 
making it a practical tool for risk 
management.1

The marginal benefits of 
diversification are diminishing: 
adding more diversification to an 
already diversified portfolio does not 
significantly improve extreme risks.

Diversification benefits can be 
achieved while maintaining the level 
of active risk2, an important feature 
for investors seeking to both fully 
utilise their active risk budget and 
manage extreme losses.

Risk-based diversification is 
achievable without reducing 
expected long-term returns.

Introduction
The benefits of diversification for 
managing risk have been known since the 
18th century (Bernoulli [1738]). At its 
core, diversification is a risk mitigation 
mechanism consisting in spreading capital 
across different investments to avoid the 
co-occurrence of losses. In equity 
portfolios, there are essentially two 
approaches to diversification. The first 
relies on the distribution of weights, 
either at the stock or sector level (eg, 
(Kacperczyk, Sialm and Zheng [2005], 
Brands, Brown and Gallagher [2005]). The 
second focuses on the diversification of 
risks (eg, Meucci [2009]).

Despite its theoretical appeal for 
portfolio construction (Asness, Frazzini 
and Pedersen [2012], Bhansali et al 
[2012]), the impact of risk-based diversifi-
cation on portfolio performance and 
extreme risk remains underexplored. This 
gap arises partly because the concepts of 
diversification and risk are often amalga-
mated due to the role that correlation 
plays in connecting both notions. 
However, risk and diversification are not 
the same: portfolios with similar risk 
levels can exhibit different levels of 
diversification, influencing performance 
and vulnerability to extreme losses.

We address this gap by analysing how 
holdings-based and risk-based active 
diversification (ie, in excess of a bench-
mark) affect equity portfolios in terms of 
active risk and extreme risk, as measured 
by the expected shortfall (CVaR), and 
performance expectations. Beyond 
providing an accurate empirical analysis 

using a large sample of US equity funds, 
we employ a novel approach based on the 
generation of portfolios with identical risk 
levels, so-called iso-risk portfolios, to 
isolate diversification effects while 
controlling for risk and holdings concen-
tration. This approach allows deeper 
insights than would normally be possible 
using the available empirical sample 
alone.

Our research highlights the following 
three key points:
l Empirical analysis: We find that active3 

funds – defined as funds materially 
deviating from the market cap-weighted 
benchmark – concentrate risks in a few 
factors, typically size and value, and that 
extreme risk (95% CVaR) is mitigated 
when increasing diversification of risks or 
sector holdings but is not impacted by the 
level of exposure-based or stock-level 
concentration. These effects are robust to 
alternative definitions of extreme risk, 
such as maximum drawdown. We also find 
decreasing marginal effects: while 
diversifying a portfolio’s risk can reduce 
by as much as 20% the probability of 
having a large CVaR for concentrated 
funds, the effect plateaus and is negligible 
for already well-diversified funds. Hence, 
investors do not need to fully maximise 
diversification to reap its full benefits in 
terms of reduction of bad performance 
surprises.
l Iso-risk portfolios: Our unique dataset 
of iso-risk portfolios demonstrates that 
risk-based diversification allows a risk 
budget to be managed efficiently: its 
benefits can be achieved regardless of the 

1 For the original unabridged version of this paper, see: 
https://papers.ssrn.com/sol3/papers.cfm?abstract_
id=5095454
2  Also known as tracking error and defined as the 
standard deviation of returns relative to a given 
benchmark.
3  We focus on active portfolios; hence the discussion 
involves active diversification and risk measures.

mailto:matteo.bagnara%40scientificportfolio.com?subject=
mailto:benoit.vaucher%40scientificportfolio.com?subject=
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5095454
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5095454
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4 We thank AQR Capital Management for BAB data 
(https://www.aqr.com/Insights/Datasets/Betting-
Against-Beta-Equity-Factors-Monthly) and Kenneth 
French for the other risk factors (https://mba.tuck.
dartmouth.edu/pages/faculty/ken.french/data_library.
html).
5 An alternative measure of risk-based diversification 
it the effective number of bets, or ENB (Meucci [2009], 
Martellini and Milhau [2018]).

starting risk level, suggesting that 
investors can diversify without necessarily 
reducing their target active risk. While 
controlling for the effect of risk and 
holdings concentration, we find that 
risk-based diversification has stronger 
mitigating effects than sector-based 
measures. The marginal impact depends 
on current diversification levels, not risk 
levels.
l Performance impact: Diversification, 
whether risk- or sector-based, does not 
significantly affect long-term expected 
returns. This result, combined with the 
previous insight, ie, additional diversifica-
tion does not require the risk level to 
change, makes diversification a powerful 
and complementary tool for active 
managers with discretionary views on 
future returns. 

Data and methodology
We begin with a cross-sectional analysis of 
476 US equity mutual funds from the 
Morningstar database, covering January 
2019 to December 2023. These funds 
collectively invest in over 1,900 individual 
stocks, offering a wide variety of risk 
profiles and compositions. To further 
enhance the analysis, in a second step we 
generate 39,400 randomised portfolios 
using the iso-risk methodology described 
later starting from daily return data. 
Funds included in the sample are active, 
meaning they meaningfully depart from 
the benchmark (minimum tracking error 
of 2%), and have a model R2 of at least 
0.80, to guarantee reliability of the 
statistics derived from the risk model.

Risk factor exposures and extreme 
risk
Risk-based diversification relies on a risk 
model. We employ the (Fama and French 
[2015]) five-factor model (market excess 
return, size, value, profitability and 
investment) plus the momentum from 
Carhart (1997) and the betting against 
beta factor (BAB) from Frazzini and 
Pedersen (2014), henceforth referred to as 
volatility.4 Factor loadings are estimated 
using five years of historical data (January 
2019–December 2023), and the market 
factor serves as the benchmark for active 
returns and risks.

Active extreme risk is measured as the 

95% active conditional value-at-risk 
(CVaR) based on daily returns. To 
maintain consistency across instruments, 
we use model-implied returns and apply 
the Cornish-Fisher expansion methodol-
ogy from Mark and Vaucher (2023), which 
provides more robust and reliable 
estimates compared to historical CVaR 
(Pritsker [2006]). Instrument betas and 
extreme risk estimates are calculated 
using daily data from the same five-year 
period. Robustness tests show that results 
remain unchanged extending the estima-
tion window to 20 years.

Diversification measures
Portfolio theory often considers a 
portfolio well diversified if it achieves the 
highest reward per unit of risk. However, 
since expected returns are difficult to 
estimate (Merton [1980]), portfolio 
managers prefer to focus on more 
heuristic definitions that capture the idea 
of spreading risk across different assets 
(Martellini and Milhau [2018]). In line 
with this approach, the analysis employs 
four diversification measures: two based 
on holdings and two on risk.
l Holding-based diversification: One of 
the most classical concentration meas-
ures is the concentration of weights. It is 
measured using the Herfindahl–
Hirschman index (HHI), which corre-
sponds to the sum of squared portfolio 
weights using either stock-level and 
sector-level holdings (eg, Brands, Brown 
and Gallagher 2005). When employed to 
assess active diversification, weight 
concentration becomes cumbersome to 
interpret for small active weights. To 
address this issue, we define the active 
holding diversification (AHD) and active 
sector diversification (ASD) as the 
inverse active HHI (with active stock and 
sector weights, respectively) normalised 
by the squared sum of their active 
capital, as explained in Bagnara and 
Vaucher (2024).
l Risk-based diversification is measured 
using active factor diversification (AFD) 
and active risk diversification (ARD). AFD 
is a concentration measure that uses 
active risk exposures (betas) instead of 
weights. On the other hand, the ARD uses 
active risk factor contributions summing 
to the portfolio’s active risk (Bagnara and 
Vaucher [2024]). Portfolios with well-
distributed exposures across risk drivers 
exhibit higher AFD, with AFD = 7 
indicating maximum factor diversification 
(equal exposure across all seven factors). 
Analogously, ARD reaches its maximum 
of 7, when total active risk is evenly 
distributed among risk factors.5 ARD 
captures the effective number of active 
bets, where diversification is evaluated in 

terms of risk contributions rather than 
just exposures.

In the last part of the analysis, we use the 
factor intensity (FI), which represents 
total active exposure to risk factors 
relative to the market. FI is proportional 
to the funds’ performance expectations, 
when assuming that in the long run the 
risk premium of all factors is the same, as 
we explain later.

Iso-risk portfolio rotations
Statistical studies on the relationship 
between portfolio characteristics and 
diversification often face limitations due 
to small sample sizes. Traditional 
methods like conditional double sorts, eg, 
on diversification and extreme risk, 
become impractical when empirical data 
is limited.

To overcome this, we use the iso-risk 
portfolio rotation method, which gener-
ates a large number of alternative 
portfolios with identical active risk and 
weight concentration as existing stock 
portfolios. This approach allows us to 
significantly expand the sample and 
analyse the relationship between diversifi-
cation and performance for any given level 
of risk. For a detailed explanation of this 
technique and its implementation, we 
refer interested readers to Vaucher and 
Bagnara (2024b).

Long-term performance
Imposing diversification on an otherwise 
unconstrained portfolio may give rise to a 
cost in terms of performance, as it may 
force the active portfolio manager to 
reallocate capital from stocks where she 
has an informational advantage to a 
broader set of investments. In other 
words, increasing diversification reduces 
the transfer coefficient and with this also 
the expected value added by active 
management. Estimating this cost 
empirically is challenging, as it requires a 
number of assumptions about investors’ 
priors and beliefs.

Our expanded portfolio sample with 
controlled risk levels offers a unique 
opportunity to examine the relationship 
between diversification and performance. 
Unlike much of the existing literature, our 
approach does not rely on historical 
performance. Instead, we simply assume 
that over the long term, all risk premia are 
expected to converge to the same value. 
Under this assumption, which provides an 
agnostic perspective on factor rewards, 
and no arbitrage, the long-term expected 
return of an asset in a linear factor model 
is its factor intensity FI scaled by the 
expected risk premium. Consequently, we 
focus on the cross-sectional variation in 



SUMMER 2025

EDHEC Research Insights  29

6 Alternatively, one can assume that in the long run risk 
factors share the same reward-to-risk ratio (Sharpe 
ratio –  SR) instead of the same risk premia. In this case, 
the expected return of an asset equals this common SR 
times a weighted factor intensity, where weights are 
determined by the relation between the volatilities of 
risk factors. Results under this assumption that analyse 
the impact of diversification on SR instead of expected 
returns are practically unchanged, and are available 
upon request.
7 Herzog et al (2023) find that ARD helps stabilise active 
risk by reducing the standard deviation of tracking 
error. Since CVaR can be seen as a function of high-
order moments such as kurtosis (eg, Mark and Vaucher 
[2023]), our results confirm and generalise what they 
previously documented. 

FI to explore the relationship between 
diversification and long-term perfor-
mance, independently of the historical 
sample.6 This agnostic approach is 
particularly valuable, as previous studies 
on risk-based diversification and perfor-
mance often yield sample-dependent 
results (Chaves et al [2011]).

Results
Stylised facts about diversification
Figure 1 presents descriptive statistics for 
the diversification measures, along with 
active annualised risk (TE) and active 
daily 95% CVaR, which assesses tail risk at 
the daily frequency. CVaR, referred to as 
extreme risk, is always measured relative 
to the benchmark and in absolute values, 
with higher levels indicating greater 
potential losses.

The median ARD is 2.04, indicating 
that most funds spread active risk across 
only two factors. Only about 20% achieve 
ARD above 3. The median AFD is even 
lower at 1, with just 10% of funds diversi-
fying across more than two factors. These 
findings reflect the under-diversification 
documented in Uppal and Wang (2003) 
and Han et al (2024). Holdings-based 
measures (AHD, ASD) show less skewed 
distributions, with the average fund 
actively investing in 117 stocks and about 
five sectors.

To identify in which few factors funds 
are mostly concentrated, we compare the 
top and bottom 20% of funds for each 
measure. ARD- and ASD-concentrated 
funds have higher exposures to size 
(average about 0.45 and 0.25) and value 
(about 0.1 for both) compared to the most 
diversified group, which shows near-zero 
exposures on average. In contrast, funds 
ranked by AFD and AHD display higher 
exposures to size and value as diversifica-
tion increases.

Diversification and extreme risk
As a risk-mitigating tool, diversification 
aims to reduce large losses. To test this 
hypothesis, we regress CVaR on various 
diversification measures according to the 
following specifications, using standard-
ised data for comparability:

1

1

1

1

1 2 3 4

i i i

i i i

i i i

i i i

i i i i i i

CVaR ARD
CVaR AFD
CVaR AHD
CVaR ASD
CVaR ARD AFD AHD ASD

α β ε
α β ε
α β ε
α β ε
α β β β β ε

= + +
= + +
= + +
= + +
= + + + + +

(1)

Comparing several specifications with 
each other allows us to verify the stability 
of the association between variables 
controlling for other diversification 
metrics. Results are reported in figure 2.

ARD strongly reduces tail risk: an 
increase of one standard deviation (0.89) 

leads to a reduction of 0.45 standard 
deviations of CVaR.7 Notably, ARD alone 
explains about 20% of the variation in 
CVaR, highlighting the strong relationship 
between extreme risk and diversification. 
Sector-based diversification has a similar 
effect, with a coefficient of -0.42. Other 
measures of diversification, on the other 
hand, have a positive and significant 
coefficient, meaning that they may even 
induce an increase in extreme risk, which 
means that diversifying weights or betas 
does not necessarily lead to a diversifica-
tion of risks.

Non-linear marginal effects
The previous section established a 
positive linear relationship between 
diversification and the reduction of 
extreme risk. However, economic 
intuition suggests the relationship may 
not be entirely linear. To explore this, we 

use Probit models that allow us to 
estimate the probability of a high level of 
losses for any given level of diversification. 
To do so we introduce a binary variable, 
high_CVar, which takes a value of 1 when 

	 ARD	 AFD	 AHD	 ASD	 TE (%)	 CVaR (%)

N	 476	 476	 476	 476	 476	 476
mean	 2.28	 1.09	 116.68	 4.52	 7.05	 1.03
std	 0.89	 0.76	 43.37	 1.07	 3.19	 0.46
min	 0.83	 0	 20.97	 3.12	 2	 0.28
1%	 0.98	 0.01	 30.3	 3.16	 2.08	 0.31
5%	 1.17	 0.05	 54.59	 3.38	 2.41	 0.36
10%	 1.32	 0.12	 65.59	 3.46	 3.01	 0.46
25%	 1.64	 0.4	 85.5	 3.74	 4.73	 0.71
50%	 2.04	 1	 110.4	 4.13	 6.61	 0.97
75%	 2.85	 1.73	 142.74	 5.06	 9.17	 1.33
90%	 3.62	 2.11	 188	 6.32	 11.72	 1.69
95%	 3.95	 2.29	 196.66	 6.67	 12.88	 1.85
99%	 4.65	 2.86	 209.57	 7.55	 14.49	 2.08
max	 5.02	 3.27	 218.47	 7.8	 15.63	 2.25

	 CVaR I	 CVaR II	 CVaR III	 CVaR IV	 CVaR V

Intercept	 0	 0	 0	 0	 0
	 -0.041	 -0.041	 -0.043	 -0.042	 -0.036
ARD	 -0.447*				    -0.214*
	 -0.041				    -0.043
AFD		  0.446*			   0.303*
		  -0.041			   -0.038
AHD			   0.367*		  0.227*
			   -0.043		  -0.038
ASD				    -0.415*	 -0.192*
				    -0.042	 -0.042
R2 Adj.	 0.198	 0.197	 0.133	 0.171	 0.389
N	 476	 476	 476	 476	 476

1. Diversification measures: descriptives

2. Multivariate analysis

Descriptive statistics for active risk diversification (ARD), active factor diversification (AFD), (normalised) active 
holding diversification (AHD) and (normalised) active sector diversification (ASD), active annualised risk (TE) and 
active daily CVaR in %. US funds, 2019-23.

Multivariate analysis described in (1). Stars (*) indicate statistical significance at the 10% level. Data is 
standardised.
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Probit marginal effects for ARD and ASD based on the last specification in (2). In each panel, variables different than 
that represented on the x-axis are kept fixed at their mean. Shaded areas denote confidence intervals.

3. Probit marginal effects for high CVaR
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CVaR exceeds the 75th percentile and 
zero otherwise, and define its probability 
using the following models:
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= = +

= = + + + +
(2)

where φ(.) is the standard normal 
cumulative distribution function.

We find that both ARD and ASD’s 
mitigating effects on extreme losses 
persist and are strongly significant when 
considered alone, but, importantly, the 
effect of ASD is not significant anymore 
once we control for risk diversification. 
Non-linear models like Probit measure 
diversification effects depending on the 
diversification levels, instead of forcing 
linearity and thus assuming the same 
effect across the entire cross-section. This 
refined analysis reveals that only ARD 
systematically reduces the probability of 
incurring large extreme losses, while ASD 
does not.

This idea is better conveyed through 
the Probit marginal effects, which 
quantify the reduction in the probability 
of high CVaR in classical probability terms 
(Greene [2012]), depending on the 
starting diversification level. We plot such 
marginal effects in figure 3, where 
variables are displayed in their original 
scale.

ARD has a strong nonlinear impact. 
When ARD is low, improving it by one 
point diminishes the probability of large 
tail risk by 20%; at the median ARD (2.04), 
the probability decreases by 15%; for high 
ARD levels, a similar change reduces the 
chance by only 2%.

Thus, diversifying reduces extreme 
losses, but with diminishing marginal 

effects: while a good level of risk diversifi-
cation is desirable, maximising diversifica-
tion may not significantly improve risks 
beyond certain levels. Conversely, ASD 
(right panel) shows no significant impact 
after accounting for ARD. This shows that 
while improving ARD effectively lowers 
the likelihood of extreme losses, other 
diversification metrics, including ASD, 
provide limited additional benefit when 
ARD does not change accordingly.

Robustness tests: long-term CVaR 
and maximum drawdown
We conduct two robustness tests to 
validate the stability of our findings.8

l Longer-horizon active extreme risk. We 
extended the analysis to a 20-year period 
(2004–23) using model-implied returns 
based on each fund’s betas and risk factor 
returns, which have longer data histories.9 
Calculating the 95% CVaR for this period, 
we repeat the linear regressions and 
Probit models. Results remain consistent 
even when computed on longer periods: 
ARD and ASD significantly impact CVaR 
in linear models (coefficients are -0.26 
and -0.15, respectively), and Probit 
models confirm ARD as the sole metric 
robustly associated with reduced active 
tail risk.
l Alternative extreme risk measure: 
maximum drawdown (MDD). While 
CVaR is widely accepted and often used 
for regulatory purposes, another dimen-
sion of extreme risk is captured by the 
maximum drawdown (MDD), which is the 
maximum cumulative loss a portfolio 
experiences before reverting back to its 
value over a certain period. We estimated 
the maximum drawdown using model 
returns from the period 2019–23 and use 
it as independent variable in the previous 

models. Regression results align with 
those for CVaR: higher ARD and ASD 
levels correspond to lower MDD (coef-
ficients are -0.17 and -0.09), though ASD’s 
significance weakens when all metrics are 
included. Probit results again highlight 
ARD’s prominent role in reducing the 
probability of high extreme losses, 
confirming the robustness of its mitigating 
capabilities across risk definitions.

Iso-risk analysis
Analysing the link between tail risk and 
risk-based diversification is challenging 
due to the intertwined nature of risk and 
extreme risk. Traditional statistical 
techniques require sample sizes that are 
currently not available, which makes it 
difficult to examine extreme risk while 
controlling for risk.

To address this, we develop a technique 
called iso-risk rotations that generates 
random portfolios with fixed risk and 
varying diversification levels.10 Simply put, 
these transformations take an existing 
portfolio to produce a new portfolio with 
random weights but precisely the same 
level of risk and holdings concentration. 
With this technique, we can generate an 
unprecedented sample of portfolios with 
fixed levels of risk but different levels of 
diversification.

Selecting 197 funds with different risk 
levels from the empirical sample, we 
perform 200 iso-risk rotations on each 
fund to obtain 39,400 synthetic portfolios 
across 197 controlled levels of risk – an 
unprecedented dataset for our analysis. In 
this expanded sample, diversification 
metrics exhibit much greater variation 
than in the empirical data: ARD ranges 
from 0.8 to 6.1, ASD from 2.58 to 9.47, 
and AFD reaches almost 4. Meanwhile, 
active risk and CVaR distributions remain 
similar to the empirical sample. This 
approach is therefore able to generate 
synthetic portfolios with diverse diversifi-
cation characteristics, allowing for a more 
precise assessment of diversification 
effects on extreme risk.

Diversification vs CVaR controlling 
risk levels
The iso-risk rotation approach allows us 
to analyse the relationship between 
diversification and CVaR while holding 
active risk constant. To achieve this, the 
generated portfolios are grouped into 49 

8 Full tabulated results are available upon request..
9 Vaucher and Bagnara (2024a) demonstrate the validity 
of this approach when model fit is adequate. Our sample 
satisfies this criterion since selected funds have an R2 of 
at least 0.80.
10 Iso-risk rotations maintain non-active holdings-based 
concentration constant, but not AHD.
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Regression coefficients of ARD and ASD according to the last specification in (3) across all 49 active risk groups. 
Dotted lines represent the average coefficients.

Regression coefficients of ARD and ASD according to the last specification in (3) across all 49 active risk groups. 
Dotted lines represent the average coefficients.

4. Impact of diversification on CVaR controlling for active risk level

5. Impact of diversification on expected returns controlling for 
active risk level
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11  Notably, we find that the range of achievable 
diversification narrows as active risk increases: for 
example, ARD can vary by up to 2 units for low-risk funds 
(2% active risk) but by less than 1 unit for high-risk funds 
(15% active risk).
12  Since the risk groups are built so that the active risk is 
kept approximately constant, the average SR per group 
is proportional to the average FI up to a constant. Hence, 
the results shown here hold also for portfolio SR and not 
only for expected performance. Results available upon 
request.

equally spaced active risk intervals. Here 
active risk variations are limited to only 
20–30 bps within each group, whereas 
diversification metrics vary more consid-
erably.11 Within each group, we run the 
previous regressions models:

, 1 , ,

, 1 , ,

, 1 , 2 , 3 , 4 , ,

i j j i j i j

i j j i j i j

i j j i j i j i j i j i j

CVaR ARD
CVaR ASD
CVaR ARD AFD AHD ASD

α β ε
α β ε
α β β β β ε

= + +

= + +

= + + + + +
(3)

where j = 1,...,49 denotes the risk group 
and i = 1,..., Nj denotes each portfolio 
belonging to the risk group j. Within each 
risk group, variables are standardised. The 
first two models assess the individual 
effects of ARD and ASD on CVaR, while 
the third controls for all diversification 
metrics, thus identifying their independ-
ent impact, at the same time leaving the 
active risk unchanged. Figure 4 visualises 
the coefficients of ARD and ASD from the 
third model across active risk levels.

Two key observations emerge. First, 
both risk-based and sector-based diversifi-
cation reduce CVaR across all risk levels: 
the average coefficients for ARD and ASD 
are very similar when taken individually 
(-0.24 and -0.28), but ARD is more 
effective than ASD at mitigating extreme 
losses when controlling for all metrics 
(coefficients are -0.20 and -0.09, respec-
tively) whatever the risk level. In other 
terms, risk diversification reduces 
extreme losses. Importantly, these 
benefits of diversification are observable 
and achievable at every active risk level: 
there are no clear regions where coeffi-
cients are systematically positive for ARD 
or ASD in the figure. The fact that 
increasing diversification does not require 
day-to-day risk to be reduced systemati-
cally is particularly appealing for investors 
adhering to strict risk budgets and 
wanting to fully consume their budget 
while mitigating extreme risks. We find 
similar results with alternative calcula-
tions of active risk groups.

Expected performance
We conclude by addressing the impact of 
diversification on expected performance. 
As we have explained before, we use the 
portfolios’ active factor intensity (FI) as a 

robust estimate of long-term expected 
returns. Because risk has an important 
impact on performance, we used our 
enlarged sample, and thus we can 
investigate the relationship between 
robust long-term returns and diversifica-
tion while neutralising the effect of risk. 
To do so, we used the same 49 active risk 
groups obtained with iso-risk portfolios 
and estimated the relationship between 
diversification using the models specified 
in (3) with FI as the left-hand side 
variable. Figure 5 shows the coefficients 
for ARD and ASD resulting from this 
exercise across the risk groups.

The average coefficients for ARD and 
ASD are generally small and statistically 
insignificant, suggesting no material 
relationship between diversification and 
expected returns. This shows that at every 

active risk level, more diversification is 
not linked to a reduction in expected 
performance.12 In practical terms, this 
also means that adding diversification 
does not require the active risk level to be 
changed to maintain long-term expected 
returns.

Conclusion
The key takeaways for investors resulting 
from our analysis are the following:
l Benefits of risk-based diversification. 
Diversification reduces the likelihood of 
extreme losses but in practice managing 
extreme risk is more effective with 
risk-based diversification than traditional 
holdings-based measures, including 
sector-based diversification, as its effect is 
robust to a variety of statistical tests.
l Diminishing marginal benefits. Adding 
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more diversification to an already 
diversified portfolio does not significantly 
improve extreme risks. Being “diversified 
enough” is sufficient.
l Effective risk mitigation. Diversifica-
tion reduces extreme losses across risk 
levels and can be achieved without having 
to underutilise a target day-to-day risk 
budget. For structurally higher-risk 
portfolios, diversification is a good 
substitute for de-risking.
l Minimal impact on performance. 
Adding diversification has no significant 
effect on expected performance. This is an 
important feature for active managers 
who wish to reflect their discretionary 
views on future returns in the allocation 
process.
l Bottom line: Risk-based diversification 
is a powerful, reliable tool for investors 
looking to reduce extreme risk and 
enhance portfolio resilience without 
underutilising their risk budget or 
compromising performance.
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